Документ подписан простой электронной подписью

Информация о владельце: ФИО: Сыров Игорь Анатольевич

СТЕРЛИТАМАКСКИЙ ФИЛИАЛ

Должность: Дирекфе ДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО Дата подписания: 21.08.2023 20:31:42

Уникальный программный ключ:

УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

уникальный программный ключ: b683afe664d7e9f64175886cf9626a19814 УНИВЕРСИТЕТ НАУКИ И ТЕХНОЛОГИЙ»

 Факультет
 Естественнонаучный

 Кафедра
 Химии и химической технологии

Аннотация рабочей программы дисциплины (модуля)

дисциплина *Б1.0.09 Спектральные методы в установлении структуры органических соединений*

	обязательная часть
	Направление
04.04.01	Химия
код	наименование направления
	Программа
	Фундаментальная и прикладная химия
	Форма обучения
	Очная
	Для поступивших на обучение в
	2022 г.

Стерлитамак 2023

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций

Формируемая	Код и наименование	Результаты обучения по
компетенция (с	индикатора достижения	дисциплине (модулю)
указанием кода)	компетенции	
ОПК-2. Способен	ОПК-2.1. применяет основы	Обучающийся должен:
анализировать,	математики, физики,	знать стандартные операции
интерпретировать и	вычислительной техники и	работы на современных
обобщать результаты	программирования;	приборах, используемых при
экспериментальных и	анализирует результаты,	проведении научных
расчетно-теоретических	полученные в ходе	исследований по химии;
работ в избранной области	исследования в избранной	оформление протоколов
химии или смежных наук	области химии и смежных	эксперимента.
	наук.	
	ОПК-2.2. решает	Обучающийся должен:
	профессиональные задачи с	уметь решать
	применением	профессиональные задачи с
	естественнонаучных и	применением
	общеинженерных знаний в	естественнонаучных и
	собственных	общеинженерных знаний в
	экспериментальных и	собственных
	расчетно-теоретических	экспериментальных и
	работах, корректно	расчетно-теоретических
	интерпретирует их.	работах, корректно
		интерпретировать результаты
		эксперимента
	ОПК-2.3. умеет	Обучающийся должен:
	формулировать заключения	владеть способностью
	и выводы по результатам	формулировать заключения и
	исследований в избранной	выводы по результатам
	области химии или смежных	спектральных исследований
	наук	

2. Цели и место дисциплины (модуля) в структуре образовательной программы

Цели изучения дисциплины:

Способность обрабатывать результаты научных экспериментов с помощью современной аппаратуры при проведении научных исследований по химии. Дисциплина изучается на 1 курсе во 2 семестре.

Дисциплина изучается на 1 курсе в 2 семестре

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 2 зач. ед., 72 акад. ч.

Объем дисциплины	Всего часов
------------------	-------------

	Очная форма обучения
Общая трудоемкость дисциплины	72
Учебных часов на контактную работу с преподавателем:	
лекций	8
практических (семинарских)	10
другие формы контактной работы (ФКР)	0,2
Учебных часов на контроль (включая часы подготовки):	
зачет	
Учебных часов на самостоятельную работу обучающихся (СР)	53,8

Формы контроля	Семестры
зачет	2

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№ п/п	Наименование раздела / темы дисциплины	Виды учебных занятий, включая самостоятельную работу обучающихся и трудоемкость (в часах) Контактная работа с преподавателем			
		Лек	Пр/Сем	Лаб	CP
1	Спектральный анализ	8	10	0	53,8
1.1	Спектроскопия в инфракрасной области	4	4	0	15
1.2	Спектроскопия в видимой и ультрафиолетовой областях	0	2	0	18,8
1.3	Спектроскопия ядерного магнитного резонанса	4	4	0	20
	Итого	8	10	0	53,8

4.2. Содержание дисциплины, структурированное по разделам (темам)

Курс практических/семинарских занятий

No	Наименование раздела / темы дисциплины	Содержание
1	Спектральный анализ	
1.1	Спектроскопия в инфракрасной области	Решение задач
1.2	Спектроскопия в видимой и ультрафиолетовой областях Решение задач	
1.3	Спектроскопия ядерного магнитного резонанса	Решение задач

Курс лекционных занятий

No	Наименование	Содержание	
	раздела / темы		
	дисциплины		
1	Спектральный анал	ктральный анализ	
1.1	Спектроскопия в	Элементы симметрии и операции симметрии. Плоскость	
	инфракрасной	симметрии. Центр симметрии. Ось симметрии (вращения) і-го	
	области	порядка. Поворотно-зеркальная ось і-го порядка. Колебания в	
		двухатомных молекулах. Многоатомные молекулы.	

		Характеристические частоты групп. Взаимосвязь	
		инфракрасных спектров и структуры органических молекул:	
		валентные и деформационные колебания, характеристичность	
		колебаний и ее физические причины, факторы, вызывающие	
		сдвиг полос поглощения и изменение их интенсивности.	
		Аппаратура. Приготовление образцов.	
1.3	Спектроскопия	Физические основы метода: магнитные свойства ядер,	
	ядерного	основное уравнение ядерного магнитного резонанса,	
	магнитного	взаимодействия магнитных моментов ядер (тонкая и	
	резонанса	сверхтонкая структура сигналов ядер). Протонный магнитный	
		резонанс. Число сигналов. Эквивалентные и неэквивалентные	
		протоны. Химический сдвиг. Спин-спиновое взаимодействие.	
		Принцип работы ЯМР спектрометра. Измерение спектров	
		протонного магнитного резонанса. Спектроскопия	
		углеродного магнитного резонанса.	