Документ подписан простой электронной подписью

Информация о владельце: ФИО: Сыров Игорь Анатольевич

СТЕРЛИТАМАКСКИЙ ФИЛИАЛ

Должность: Дирекфе дерального государственного БЮДжетного образовательного Дата подписания: 30.10.2023 12:05:51

Уникальный программный ключ:

УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

уникальный программный ключ: b683afe664d7e9f64175886cf9626a19/14-2ad/3/СКИЙ УНИВЕРСИТЕТ НАУКИ И ТЕХНОЛОГИЙ»

Факультет Естественнонаучный Кафедра Общей и теоретической физики Аннотация рабочей программы дисциплины (модуля) Б1.О.13.04 Колебания и волны дисциплина обязательная часть Специальность 21.05.05 Физические процессы горного или нефтегазового производства наименование специальности код Программа специализация N 2 "Физические процессы нефтегазового производства" Форма обучения Заочная Для поступивших на обучение в

Стерлитамак 2023

2023 г.

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций

Формируемая компетенция (с указанием кода)	Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине (модулю)
ОПК-16. Способен использовать технические средства для оценки свойств горных пород и состояния массива, а также их влияния на параметры процессов добычи, переработки минерального сырья, строительства и эксплуатации подземных сооружений	ОПК-16.1. Сравнивает технические средства для оценки свойств горных пород и состояния массива, оценивает их влияния на параметры процессов добычи, переработки минерального сырья, строительства и эксплуатации подземных сооружений.	Обучающийся должен: понимать теоретические основы, основные понятия, законы и модели колебательных и волновых процессов и явлений.
- F 7	ОПК-16.2. Применяет знания по оценке свойств горных пород и состояния массива, оценивает их влияния на параметры процессов добычи, переработки минерального сырья, строительства и эксплуатации подземных сооружений в профессиональной деятельности.	Обучающийся должен: оценивать степень достоверности результатов, полученных с помощью экспериментальных и теоретических методов исследования, анализировать и применять физические законы и явления для решения задач.
	ОПК-16.3. Принимает участие в оценке свойств горных пород и состояния массива, а также их влияния на параметры процессов добычи, переработки минерального сырья, строительства и эксплуатации подземных сооружений.	Обучающийся должен: владеть методами обработки и анализа экспериментальной и теоретической физической информации, методиками решения задач по физике колебательных и волновых явлений
ОПК-6. Способен выбирать и (или) разрабатывать обеспечение интегрированных технологических систем эксплуатационной разведки, добычи и переработки полезных ископаемых, в том	ОПК-6.1. Применяет теоретические и методологические основы интегрирования технологических систем и автоматизацию управления для решения конкретных профессиональных задач.	Обучающийся должен: понимать базовые теоретические знания фундаментальных разделов общей и теоретической физики
числе при освоении ресурсов шельфа морей и океанов, техническими средствами с высоким уровнем	ОПК-6.2. Решает типовые задачи интегрирования технологических систем; применяет знания	Обучающийся должен: использовать базовые теоретические знания фундаментальных разделов

автоматизации управления	разработки	общей и теоретической
	интегрированных	физики
	технологических систем с	
	высоким уровнем	
	автоматизации управления в	
	профессиональной сфере	
	деятельности.	
	ОПК-6.3. Анализирует и	Обучающийся должен
	обобщает научно-	пользоваться базовыми
	технические разработки и	теоретическими знаниями
	передовой	фундаментальных разделов
	производственный опыт,	общей и теоретической
	методы моделирования;	физики
	осуществляет выбор	
	интегрированных	
	технологических систем,	
	технических средств	
	автоматизации управления.	

2. Цели и место дисциплины (модуля) в структуре образовательной программы

Цели изучения дисциплины:

теоретическое и практическое изучение общих методов исследования и основных моделей колебательно-волновых явлений и процессов, их приложение к конкретным физическим и техническим задачам, что составляет базу естественнонаучной и профессиональной подготовки будущих специалистов, способных выполнять все виды профессиональной деятельности, предусмотренные ФГОС ВПО для данного направления подготовки, формирования физической составляющей общекультурных и профессиональных компетенций; обеспечение высокого уровня подготовки по данной дисциплине как основы формирования общенаучных, профессиональных, социально-личностных и общекультурных компетенций; развитие у студентов личностных качеств и способностей успешно работать в новых, быстро развивающихся областях науки и техники, самостоятельно непрерывно приобретать новые знания, умения и навыки.

Дисциплина реализуется в рамках обязательной части.

Для освоения дисциплины необходимы компетенции, знания и умения сформированные в рамках дисциплин "Механика", "Молекулярная физика", "Электричество и магнетизм".

Дисциплина изучается на 1, 2 курсах в 2, 3 семестрах

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 216 акад. ч.

	Всего часов
Объем дисциплины	Заочная форма
	обучения

Общая трудоемкость дисциплины	216
Учебных часов на контактную работу с преподавателем:	
лекций	6
практических (семинарских)	10
другие формы контактной работы (ФКР)	1,2
Учебных часов на контроль (включая часы подготовки):	7,8
экзамен	
Учебных часов на самостоятельную работу обучающихся	191
(CP)	

Формы контроля	Семестры
экзамен	3

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№	Наименование раздела / темы	Виды учебных занятий, включая самостоятельную работу обучающихся и трудоемкость (в часах)			
п/п	дисциплины	Контактная работа с			
		преподавателем		CP	
_		Лек	Пр/Сем	Лаб	
1	МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ	3	4	0	70
1.1	Гармонические колебания	1	0	0	10
1.2	Механические маятники	0	2	0	12
1.3	Маятники в постоянных силовых	1	0	0	12
1.3	ПОЛЯХ ХІЙНІКОГОЯННІКОГОВЫХ ТРИГОВЫХ	1	O	U	12
1.4	Сложение колебаний	0	2	0	12
1.5	Затухающие колебания	1	0	0	12
1.6	Вынужденные механические	0	0	0	12
	колебания				
2	ЭЛЕКТРОМАГНИТНЫЕ	2	4	0	52
	КОЛЕБАНИЯ				
2.1	Свободные гармонические	1	2	0	12
	колебания в колебательном контуре				
2.2	Свободные затухающие колебания в	0	0	0	12
	колебательном контуре				
2.3	Вынужденные электромагнитные	1	2	0	14
	колебания.				
2.4	Автоколебания, автоколебательные	0	0	0	14
	системы				
3	МЕХАНИЧЕСКИЕ	1	2	0	38
	(УПРУГИЕ)ВОЛНЫ				
3.1	Механические (упругие) волны	1	2	0	12
3.2	Акустические колебания	0	0	0	12
3.3	1 1		14		
4	ЭЛЕКТРОМАГНИТНЫЕ	0	0	0	31

	волны				
4.1	Существование электромагнитных	0	0	0	15
	волн				
4.2	Свойства плоских	0	0	0	16
	электромагнитных волн				
	Итого	6	10	0	191

4.2. Содержание дисциплины, структурированное по разделам (темам)

Курс лекционных занятий

No	Наименование раздела	Содержание	
	/ темы дисциплины	· · •	
1	МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ		
1.1	Гармонические	Гармонические колебания и их характеристики.	
	колебания	Гармонический осциллятор. Квазиупругие силы.	
		Механические гармонические колебания. Решение	
		дифференциального уравнения свободных гармонических	
		колебаний. Амплитуда, период, частота и фаза колебаний.	
		Механические гармонические колебания. Скорость и	
		ускорение механических гармонических колебаний. Закон	
		превращения энергии механических колебаний.	
		Максимальное и среднее значение механической энергии	
		при свободных гармонических колебаниях. Графическое	
		представление колебаний.	
1.0	26		
1.3	Маятники в	Пружинный маятник в постоянном силовом поле.	
	постоянных силовых	Математический маятник в постоянном силовом поле.	
1.5	полях	7 P	
1.5	Затухающие колебания	Затухающие механические колебания. Решение	
		дифференциального уравнения затухающих	
		гармонических колебаний. Физический смысл	
		коэффициента затухания. Декремент и логарифмический	
2	ЭЛЕКТРОМАГНИТНЫ	декремент затухания.	
2.1	Свободные	Свободные гармонические колебания в колебательном	
2.1	гармонические	контуре. Решение дифференциального уравнения	
	колебания в	свободных колебаний. Аналогия между механическими и	
	колебательном контуре	электромагнитными колебаниями.	
2.3	Вынужденные	Вынужденные электромагнитные колебания. Явление	
	электромагнитные	резонанса в электромагнитном контуре. Резонанс	
	колебания.	напряжений. Явление резонанса в электромагнитном	
		контуре. Резонанс токов.	
3	МЕХАНИЧЕСКИЕ (УП		
3.1	Механические (упругие)	Механические (упругие) волны. Фазовая скорость.	
	волны	Групповая скорость. Интерференция волн. Стоячие волны.	
		Вывод уравнения стоячей волны.	

Курс практических/семинарских занятий

No	Наименование раздела	Содержание
	/ темы дисциплины	
1	МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ	
1.2	Механические маятники	Решение задач на тему: Пружинный маятник.

		Математический маятник. Физический маятник.	
		Дифференциальные уравнения колебаний маятников.	
		Периоды колебаний маятников. Длина физического	
		маятника. Оборотный маятник. Решение задач на тему:	
		Физический маятник. Дифференциальные уравнения	
		колебаний маятников. Периоды колебаний маятников.	
		Длина физического маятника. Оборотный маятник.	
1.4	Сложение колебаний	Метод векторных диаграмм в теории колебаний.	
		Биения. Графическое представление биений.	
		Сложение взаимно перпендикулярных колебаний. Фигуры	
		Лиссажу. Метод комплексных чисел в теории колебаний.	
2	ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ		
2.1	Свободные	Решение задач на тему: Свободные гармонические	
	гармонические	колебания в колебательном контуре. Решение	
	колебания в	дифференциального уравнения свободных колебаний.	
	колебательном контуре	Аналогия между механическими и электромагнитными	
		колебаниями.	
2.3	Вынужденные	Решение задач на тему: Переменный ток. Резонанс токов.	
	электромагнитные	Резонанс напряжений.	
	колебания.		
3	МЕХАНИЧЕСКИЕ (УПРУГИЕ)ВОЛНЫ		
3.1	Механические (упругие)	Решение задач на тему: Механические (упругие) волны.	
	волны	Фазовая скорость. Групповая скорость. Интерференция	
		волн. Стоячие волны. Вывод уравнения стоячей волны.	