Документ подписан простой электронной подписью

Информация о владельце: ФИО: Сыров Игорь Анатольевич

СТЕРЛИТАМАКСКИЙ ФИЛИАЛ

Должность: Дирекфе дерального государственного Бюджетного образовательного дата подписания: 28.06.2022 10:40:01

Дата подписания: 28.06.2022 10:40:01

УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

уникальный программный ключ: b683afe664d7e9f64175886cf9626a1% (14)ad35 ИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет	Естественнонаучный
Кафедра	Общей и теоретической физики

Аннотация рабочей программы дисциплины (модуля)

дисциплина	Б1.О.15.02 Молекулярная физика
	обязательная часть
	Направление
03.03.02	Физика
код	наименование направления
	Программа
	Медицинская физика
	Форма обучения
Очная	
	Для поступивших на обучение в
	2021 г.

Стерлитамак 2022

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций

Формируемая компетенция (с	Код и наименование индикатора достижения	Результаты обучения по дисциплине (модулю)
указанием кода)	компетенции	дисциплине (модулю)
ОПК-1. Способен	ОПК-1.1. Разбирается в	Обучающийся должен:
применять базовые	основных понятиях и	разбираться в основных
знания в области физико-	законах физики и других	законах физики, границах
математических и (или)	естественных наук, методах	применимости основных
естественных наук в	математического аппарата и	законов классической физики,
сфере своей	систем	системах физических величин,
профессиональной		размерностиях физических
деятельности;		величин, истории развития и
		становления физики, ее
		современном состоянии.
	ОПК-1.2. Решает	Обучающийся должен:
	стандартные	- анализировать информацию
	профессиональные задачи с	по физике из различных
	применением физико-	источников, структурировать,
	математических и	оценивать, представлять её в
	естественнонаучных знаний,	доступном для других виде;
	методов научного анализа и	- приобретать новые знания по
	моделирования	физике, используя
		современные информационные
		и коммуникационные
		технологии;
		- применять общие законы
		физики для решения задач.
	ОПК-1.3. Проводит	Обучающийся должен:
	теоретические и	разбираться в методологии
	экспериментальные	исследования в области
	исследования в сфере	физики, навыками решения
	профессиональной	задач, навыками анализа
	деятельности	физических закономерностей.

2. Цели и место дисциплины (модуля) в структуре образовательной программы

Цели изучения дисциплины:

Дисциплина реализуется в рамках базовой части.

Для освоения дисциплины необходимы компетенции, сформированные в рамках изучения следующих дисциплин: «Математический анализ», «Теория вероятностей и математическая статистика», «Аналитическая геометрия».

Дисциплина изучается на 1 курсе в 2 семестре

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 4 зач. ед., 144 акад. ч.

Obj. ov. manyar manya	Всего часов	
Объем дисциплины	Очная форма обучения	
Общая трудоемкость дисциплины	144	
Учебных часов на контактную работу с преподавателем:		
лекций	44	
практических (семинарских)		
лабораторных	60	
другие формы контактной работы (ФКР)	0,2	
Учебных часов на контроль (включая часы подготовки):		
дифференцированный зачет		
Учебных часов на самостоятельную работу обучающихся (СР)	39,8	

Формы контроля	Семестры
дифференцированный зачет	2

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

		Виды учебных занятий, включая самостоятельную работу обучающихся и			
№ п/п	Наименование раздела / темы дисциплины	Ко	трудоемкость онтактная работ		
			преподавателем		CP
		Лек	Пр/Сем	Лаб	
5.1	Понятие фазы.	4	0	0	4
1.1	Предмет молекулярной физики.	2	0	6	0
1.2	Основные представления молекулярно-кинетической теории газов.	4	0	6	2
1.3	Явление переноса	4	0	6	4
2	Основы термодинамики	12	0	10	8,8
1	Основы молекулярно-	10	0	18	6
	кинетической теории газов	-			-
3	Реальные газы и жидкости	8	0	12	8
5	Равновесие фаз и фазовые	8	0	10	8
	переходы				
4.2	Тепловые свойства твердых тел:	4	0	10	4
4.1	Аморфные и кристаллические	2	0	0	4
	тела.				
4	Твердые тела	6	0	10	8
3.2	Свойства жидкого состояния.	4	0	6	4
3.1	Отступление реальных газов от	4	0	6	4

	законов идеального газа.				
2.3	Тепловые двигатели	6	0	0	4
5.2	Фазовая диаграмма	4	0	10	4
2.2	Законы термодинамики	4	0	10	2
2.1	Термодинамическая система.	2	0	0	2,8
	Итого	44	0	60	38,8

4.2. Содержание дисциплины, структурированное по разделам (темам)

Курс лекционных занятий

№	Наименование раздела /	Содержание
	темы дисциплины	
5.1	Понятие фазы.	Понятие фазы. Фазовые переходы первого рода. Теплота фазового перехода.
1.1	Предмет молекулярной физики.	Предмет молекулярной физики. Термодинамический и статистический подходы к изучению макроскопических систем. Экспериментальное обоснование молекулярнокинетической теории вещества. Броуновское движение.
1.2	Основные представления молекулярно- кинетической теории газов.	Основные представления молекулярно-кинетической теории газов. Давление газа. Идеальный газ. Молекулярно-кинетическое истолкование давления. Абсолютная температура. Постоянная Больцмана. Молекулярно-кинетическое истолкование температуры. Уравнение Клапейрона-Менделеева. Газовые законы. Уравнение Клапейрона-Менделеева. Газовые законы. Барометрическая формула. Измерение скоростей молекул, опыт Штерна. Распределение скоростей молекул по Максвеллу. Распределение Максвелла-Больцмана.
1.3	Явление переноса	Распределение энергии молекул по степеням свободы. Эффективное сечение, средняя длина и среднее время свободного пробега молекул. Явление переноса в газах. Диффузия. Внутреннее трение. Теплопроводность. Теплопроводность и внутреннее трение при низком давлении.
2	Основы термодинамики	
1	Основы молекулярно- ки	нетической теории газов
3	Реальные газы и жидкост	•
5	Равновесие фаз и фазовы	е переходы
4.2	Тепловые свойства твердых тел:	Тепловые свойства твердых тел: тепловое расширение, теплопроводность, теплоемкость. Закон Дюлонга и Пти. Затруднения классической физики в объяснении температурной зависимости теплоемкости твердых тел.
4.1	Аморфные и кристаллические тела.	Аморфные и кристаллические тела. Монокристаллы и поликристаллы. Анизотропия кристаллов. Дальний порядок в кристаллах. Классификация кристаллов по виду кристаллических решеток и типу связей. Жидкие кристаллы: структура и свойства.
4	Твердые тела	, <u> </u>
3.2	Свойства жидкого состояния.	Свойства жидкого состояния. Поверхностный слой. Поверхностное натяжение. Формула Лапласа.

		мачивание. Капиллярные явления. Растворы. Теплота
		растворения. Осмотическое давление. Закон Вант Гоффа.
3.1	Отступление реальных	Отступление реальных газов от законов идеального газа.
	газов от законов	Межмолекулярное взаимодействие. Модель реального
	идеального газа.	газа по Ван-дер-Ваальсу. Критическое состояние.
		Внутренняя энергия реального газа. Эффект Джоуля –
		Томпсона.
2.3	Тепловые двигатели	Неосуществимость вечных двигателей второго рода.
		Тепловые машины. Цикл Карно. Теоремы Карно.
		Реальные циклы. Энтропия. Статистическое
		истолкование второго начала термодинамики. Теорема
		Нернста. Недостижимость абсолютного нуля.
5.2	Фазовая диаграмма	Диаграмма равновесия твердой, жидкой и газовой фаз.
		Уравнение Клапейрона- Клаузиуса. Тройная точка.
		Особенности фазовых превращений воды и их роль в
		природе. Влажность.
2.2	Законы термодинамики	Внутренняя энергия. Взаимодействие
		термодинамических систем. Работа и теплота как формы
		обмена энергией между системами. Первое начало
		термодинамики. Применение первого начала
		термодинамики к изопроцессам. Адиабатический
		процесс. Вывод уравнение адиабаты. Понятие о
		политропических процессах. Второе начало
		термодинамики.
2.1	Термодинамическая	Термодинамическая система. Параметры состояния.
	система.	Термодинамическое равновесие. Квазистатические
		процессы. Обратимые и необратимые процессы.

Курс лабораторных занятий

№	П анманаранна раздала /	Содорожение
745	Наименование раздела /	Содержание
	темы дисциплины	
1.1	Предмет молекулярной	Вводное занятие Обработка результатов измерений.
	физики.	Абсолютная и относительная погрешность.
		«Изучение приборов для измерения температуры и
		давления»
		Лабораторная работа № 1 «Взвешивание на
		аналитических весах»
1.2	Основные представления	Лабораторная работа № 2 «Экспериментальное
	молекулярно-	определение газовых постоянных»
	кинетической теории	Лабораторная работа № 3 Лабораторная работа № 3
	газов.	«Определение параметров молекул»
		Лабораторная работа № 4 Лабораторная работа № 4
		«Опытная проверка закона Шарля»
		Лабораторная работа № 5 Лабораторная работа № 5
		«Определение числа Авогадро»
1.3	Явление переноса	
		Лабораторная работа № 9 «Определение средней
		длины свободного пробега и эффективного диаметра
		молекул воздуха»
		Лабораторная работа № 10 «Измерение коэффициента

		HILD WALL HOPEN B BODHING
		диффузии паров в воздухе.
		Лабораторная работа № 12 Лабораторная работа № 12
		«Определение коэффициента вязкости жидкости
		капиллярным вискозиметром»
2	Основы термодинамики	
1	Основы молекулярно- ки	_
3	Реальные газы и жидкост	
5	Равновесие фаз и фазовые	е переходы
4.2	Тепловые свойства	
	твердых тел:	Лабораторная работа № 15 «Изучение расширения
		твёрдых тел»
		Лабораторная работа № 16 «Изучение процесса
		кристаллизации»
4	Твердые тела	
3.2	Свойства жидкого	Лабораторная работа № 11 «Определение влажности
	состояния.	воздуха»
		Лабораторная работа № 13«Определение удельной
		теплоёмкости жидкости методом электрокалориметра»
		Лабораторная работа № 14 Лабораторная работа № 14
		«Изучение явления поверхностного натяжения»
3.1	Отступление реальных	Лабораторная работа № 17 «Определение коэффициента
	газов от законов	теплопроводности воздуха»
	идеального газа.	Лабораторная работа № 18 «Определение отношения
		теплоёмкостей воздуха при постоянном давлении и
		постоянном объёме методом Клемана-Дезорма на
		установке ФПТ1-6Н»
		Лабораторная работа № 19 «Определение
		отношения теплоёмкостей воздуха при постоянном
		давлении и постоянном объёме резонансным методом»
5.2	Фазовая диаграмма	Лабораторная работа № 20 «Определение теплоёмкости
3.2	т изовил днигримми	твёрдых тел»
2.2	Законы термодинамики	Лабораторная работа № 6 «Определение отношения
	careins replicamanian	удельных теплоёмкостей для воздуха с использованием
		трубки Кундта»
		Лабораторная работа № 7 «Определение отношения
		удельных теплоёмкостей для воздуха методом Клемана-
		удельных теплосикостей для воздуха истодом клемана- Дезорма»
		дезорма» Пабораторная работа № 8 «Определение удельной и
		молярной теплоёмкостей воздуха при постоянном
		объёме»