СТЕРЛИТАМАКСКИЙ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет	ультет Естественнонаучный		
Кафедра	дра Общей и теоретической физики		
Aı	ннотация рабочей программы дисциплины (модуля)		
дисциплина	Б1.О.15 Физика		
	of grown was vestil		
	обязательная часть		
	Направление		
	-		
10.03.01	Информационная безопасность		
код	наименование направления		
	Программа		
77			
Безопасность к	омпьютерных систем (по отрасли или в сфере профессиональной		
	деятельности)		
	Форма обучения		
	Форма обучения		
	Очно-заочная		
	Для поступивших на обучение в		
	2021 г.		

Стерлитамак 2022

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций

Формируемая компетенция (с указанием кода)	Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине (модулю)
ОПК-4. Способен применять необходимые физические законы и модели для решения задач профессиональной деятельности;	ОПК-4.1. Знает физические законы и модели, необходимые при решении задач в профессиональной деятельности.	Обучающийся должен: знать физические законы и модели, необходимые при решении задач в профессиональной деятельности
	ОПК-4.2. Применяет необходимые физические законы и модели для решения задач профессиональной деятельности.	Обучающийся должен: уметь применять необходимые физические законы и модели для решения задач профессиональной деятельности.
	ОПК-4.3. Владеет навыками физического моделирования при решении задач в профессиональной деятельности.	Обучающийся должен: владеть навыками физического моделирования при решении задач в профессиональной деятельности.

2. Цели и место дисциплины (модуля) в структуре образовательной программы

Цели изучения дисциплины:

подготовка студента к практическому использованию физических законов и моделей при решении задач профессиональной деятельности.

Дисциплина изучается в базовой части.

Дисциплина изучается на 1 курсе в 2 семестре

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 3 зач. ед., 108 акад. ч.

06	Всего часов
Объем дисциплины	Очно-заочная обучения

Общая трудоемкость дисциплины	108
Учебных часов на контактную работу с преподавателем:	
лекций	16
практических (семинарских)	32
другие формы контактной работы (ФКР)	0,2
Учебных часов на контроль (включая часы подготовки):	
зачет	
Учебных часов на самостоятельную работу обучающихся (СР)	59,8

Формы контроля	Семестры
зачет	2

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№ п/п	Наименование раздела / темы дисциплины	Виды учебных занятий, включая самостоятельную работу обучающихся и трудоемкость (в часах)			
11/11	темы дисциплины	Контактная работа с преподавателем			СР
		Лек	Пр/Сем	Лаб	
4.5	Физика элементарных частиц	1	2	0	1,8
3	Электричество и магнетизм	4	8	0	16
1	Механика	4	8	0	16
1.1	Кинематика материальной точки	1	2	0	4
1.2	Динамика системы	1	2	0	4
1.2	материальных точек	1	2	U	4
1.3	Импульс тела. Работа и энергия	1	2	0	4
1.4	Динамика вращательного	1	2	0	4
1.4	движения твёрдого тела	1	2	0	4
2	Молекулярная физика и	3	6	0	12
	основы термодинамики				
2.1	Основы молекулярно-	1	2	0	4
	кинетической теории				
2.3	Реальные газы, жидкости и	1	2	0	4
	твёрдые тела				
2.2	Основы термодинамики	1	2	0	4
3.1	Электростатика	1	2	0	4
3.2	Постоянный электрический	1	2	0	4
	ток				
3.3	Магнитные явления	1	2	0	4
3.4	Электромагнитная индукция	1	2	0	4
4	Оптика и атомная физика	5	10	0	15,8
4.1	Геометрическая оптика	1	2	0	4
4.2	Волновая оптика	1	2	0	4
4.3	Квантовые свойства света	1	2	0	4
4.4	Физика атома	1	2	0	2

Итого	16	32	0	59.8
		~-	-	, -

4.2. Содержание дисциплины, структурированное по разделам (темам)

Курс практических/семинарских занятий

Ŋoౖ	Наименование раздела /	Содержание
	темы дисциплины	
4.5	Физика элементарных	Решение задач по теме «Физика атомного ядра и
	частиц	элементарных частиц»
3	Электричество и магнети:	3M
1	Механика	
1.1	Кинематика материальной	Решение задач по кинематике
	точки	
1.2	Динамика системы	Решение задач по динамике
	материальных точек	
1.3	Импульс тела. Работа и	Решение задач по теме «Импульс. Работа. Энергия»
	энергия	
1.4	Динамика вращательного	Решение задач по динамике вращательного движения
	движения твёрдого тела	
2	Молекулярная физика и о	
2.1	Основы молекулярно-	Решение задач по теме «Основы молекулярно-
	кинетической теории	кинетической теории»
2.3	Реальные газы, жидкости	Решение задач по теме «Реальные газы, жидкости и
	и твёрдые тела	твёрдые тела»
2.2	Основы термодинамики	Решение задач по термодинамике
3.1	Электростатика	Решение задач по теме «Электростатика. Закон Кулона»
3.2	Постоянный	Решение задач по теме «Электрический ток »
	электрический ток	
3.3	Магнитные явления	Решение задач по теме «Магнитное поле»
3.4	Электромагнитная	Решение задач по теме «Электромагнитная индукция»
	индукция	
4	Оптика и атомная физика	
4.1	Геометрическая оптика	Решение задач по теме «Геометрическая оптика.
		Отражение света от плоской и сферической
		поверхности» «Преломление света на границе раздела
		сред. Тонкая линза»
4.2	Волновая оптика	Решение задач по теме «Интерференция и дифракция
		света. Поляризация света»
4.3	Квантовые свойства света	Решение задач по теме «Квантовые свойства излучения»
4.4	Физика атома	Решение задач по теме «Строение и свойства атомов»

Курс лекционных занятий

№	Наименование	Содержание
	раздела / темы	
	дисциплины	
4.5	Физика элементарных	Размер, состав и заряд атомных ядер. Зарядовое и массовое
	частиц	числа. Нукло-ны. Дефект массы, энергия связи ядра.
		Изотопы. Изобары. Ядерные силы. Модели ядра. Ядерные
		реакции и их основные типы. Цепная реакция деле-ния ядра.
		Термоядерный синтез атомных ядер. Перспективы ядерной
		энер-гетики. Естественная и искусственная
		радиоактивность. Закон радиоак-тивного распада. Правило

		смещения. Период полураспада. Закономерно-сти и и
		распадов, -излучение и его свойства. Элементарные
		частицы. Космическое излучение. Типы взаимодействий
		элементарных частиц. Ча-стицы и античастицы.
2	2	Классификация микрочастиц. Гипотеза кварков.
1	Электричество и магн	етизм
	Механика Кинематика	Management Commence
1.1		Механическое движение. Материальная точка. Система
	материальной точки	отсчета. Радиус-вектор. Векторы перемещения, скорости и
		ускорения. Описание движения точки: прямолинейные
		равномерное и равноускоренное. Графики пути и скорости.
		Движение тела по окружности. Нормальное, тангенциальное
		и полное ускорения при криволинейном движении.
		Кинематика вращатель-ного движения. Угловая скорость и
1.2	П	угловое ускорение. Связь линейных и угловых величин.
1.2	Динамика системы	Инерциальные системы отсчета. Масса. Первый закон
	материальных точек	Ньютона. Сила. Второй закон Ньютона. Уравнение
		движения материальной точки. Третий закон Ньютона.
		Сложение сил. Принцип относительности, преобразования Галилея и Лоренца. Следствия из них.
		Силы в природе. Сила трения. Коэффициент трения. Сила
		упругости. Закон Гука. Закон всемирного тяготения. Сила
		тяжести. Вес. Напряженность поля гравитации. Понятие о
		невесомости. Космические скорости. Неинерциальные
		системы отсчета. Силы инерции.
		спетемы отелета. Стыты тердит.
1.3	Импульс тела. Работа	Импульс тела. Закон сохранения импульса. Закон движения
	и энергия	центра масс. Реактивное движение. Работа силы. Мощность.
		Кинетическая и потенци-альная энергии. Закон сохранения
		механической энергии. Консервативные и
		неконсервативные силы. Внутренняя энергия. Всеобщий
		закон сохране-ния энергии.
1.4	Динамика	Вращение твердого тела. Момент инерции. Момент силы.
	вращательного	Момент импульса относительно оси вращения. Основной
	движения твёрдого	закон динамики вращательного движения. Закон сохранения
	тела	и изменения момента импульса.
2		и и основы термодинамики
2.1	Основы молекулярно-	Молекулярно-кинетическая теория вещества. Идеальный
	кинетической теории	газ. Опытные законы идеального газа. Уравнение состояния
		газа. Уравнение Клапейро-на-Менделеева. Закон Дальтона.
		Закон Авогадро. Абсолютная шкала тем-ператур.
		Распределение скоростей молекул по Максвеллу и его
		опытное подтверждение. Барометрическая формула.
		Распределение Больцмана. Явление переноса в
		термодинамических неравновесных системах, тепло-
2.3	Реальные газы,	проводность газов, диффузия, вязкость. Реальные газы. Насыщенный пар. Критическое состояние.
2.3	жидкости и твёрдые	Уравнение Ван-дер-Ваальса. Внутренняя энергия реального
	-	газа. Жидкости, их основные свойства. Молекулярное
	тепа	
	тела	
	тела	давление и поверхностное натяжение. Капилляр-ные
	тела	

2.2	Основы термодинамики Сермодинамики	Термодинамическая система. Термодинамическое равновесие. Параметры состояния. Внутренняя энергия. Взаимодействие термодинамических си-стем. Работа и теплота как формы обмена энергией между системами. Квазистатические процессы. Первое начало термодинамики. Применение пер-вого начала термодинамики к изопроцессам. Теплоёмкость. Адиабатиче-ский процесс. Политропический процесс. Второе начало термодинамики. Обратимые и необратимые процессы. Тепловые машины. Цикл Карно. Теоремы Карно. Реальные циклы. Неосуществимость вечных двигателей. Энтропия. Приведённая теплота. Закон возрастания энтропии. Статисти-ческое истолкование второго начала термодинамики. Теорема Нернста. Недостижимость абсолютного нуля
3.1	Электростатика	Два вида электрических зарядов. Дискретность заряда. Закон сохранения электрического заряда. Электростатическое поле. Закон Кулона. Напря-женность электрического поля. Поле точечного заряда. Принцип суперпо-зиции полей. Поток напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме. Работа перемещения заряда в элек-тростатическом поле; потенциал, разность потенциалов. Связь между напряженностью и потенциалом. Потенциальность электростатического поля Диполь. Дипольный момент, поляризованность. Типы диэлектриков. Поляризация, диэлектрическая проницаемость. Электрическое смещение. Теорема Остроградского-Гаусса для поля в диэлектрике. Условия на гра-нице двух диэлектриков. Сегнетоэлектрики. Проводники в электрическом поле. Электроёмкость. Конденсаторы. Способы соединения конденсато-ров. Энергия заряженного проводника, конденсатора. Энергия электроста-тического поля. Плотность энергии.
3.2	Постоянный электрический ток Магнитные явления	Понятие об электрическом токе. Постоянный электрический ток. Сила то-ка. Плотность тока проводимости. Закон Ома для участка цепи. Электро-проводимость, сопротивление. Последовательное и параллельное соеди-нение проводников. Температурная зависимость сопротивлений. Условия существования тока. Источники тока. Электродвижущая сила источника. Закон Ома для неоднородного участка и полной цепи. Правила Кирхгофа и их практическое применение. Работа и мощность тока. КПД источников. Закон Джоуля-Ленца. Закон Ома и Джоуля-Ленца в дифференциальной форме. Магнитное поле и его характеристики: индукция, напряженность магнит-ного поля. Закон Био-Савара-Лапласа и его применение к расчетам маг-нитных полей прямого и кругового токов. Закон полного тока. Сила Ампера. Взаимодействие параллельных токов. Сила Лоренца и ее проявление. Движение заряженных частиц в магнитном поле. Ускорители заряженных частиц. Магнитный поток. Теорема Гаусса для магнитных полей. Виток с током в

		магнитном поле. Магнитные поля соленоида, тороида.
		Магнитное поле в веществе. Намагниченность.
		Диамагнетизм, парамагнетизм, ферро-магнетизм.
		Магнитный гистерезис
3.4	Электромагнитная	Опыты Фарадея. Явление электромагнитной индукции.
3.4	индукция	Закон электромаг-нитной индукции Фарадея и правило
	индукция	Ленца. Вращение рамки в магнитном поле. Генератор
		переменного тока. Индуктивность контура. Явление само-
		индукции, взаимоиндукции. Принцип работы
		трансформатора. Энергия магнитного поля. Плотность
4	Оптика и атомная физ	энергии.
4.1	Геометрическая	Основные законы оптики: законы прямолинейного
7.1	оптика	распространения, от-ражения, преломления.
	OIIIIKa	Центрированная оптическая система, собирающая и
		рассеивающая линзы. Формула тонкой линзы. Зеркала:
		плоские и сферические. Получение изображений с помощью
		линз и зеркал. Оптические приборы: лупа, микроскоп,
		телескоп. Основные фотометрические величины и их
		единицы. Полное внутреннее отражение. Абсолютный и
		относительный показатели преломления сред.
4.2	Волновая оптика	Свет как электромагнитная волна. Шкала электромагнитных
1.2	Волговал оптика	волн. Монохроматические волны. Пространственная и
		временная когерентность. Интерференция. Методы
		наблюдения интерференции. Кольца Ньютона. Применение
		интерференции света. Дифракция света. Принцип Гюйгенса-
		Френеля. Метод зон Френеля. Дифракция Френеля на
		круглом отверстии и диске. Дифракция Фраунгофера на
		щели. Дифракция Фраунгофера на дифракционной решетке.
		Пространственная дифракционная решетка. Разрешающая
		способность дифракционной решетки, оптических
		приборов. Поляризация света. Естественный и
		поляризованный свет. Поляризация света при падении на
		границу раздела двух диэлектриков. Явление полной
		поляризации. Угол Брюстера. Двойное лучепреломление в
		оптически анизотропных средах. Вращение плоскости
		поляризации в оптически активных средах.
		Поляризации в оптически активных средах. Поляризационные приборы (призмы и поляроиды). Анализ
		поляризованного света. Взаимодействие света с веществом.
		Дисперсия света. Электронная теория дисперсии. Рассеяние
		света. Поглощение света.
4.3	Квантовые свойства	Тепловое излучение и его характеристики. Законы
1.3	света	излучения черного те-ла: закон Кирхгофа, закон Стефана-
		Больцмана; закон смещения Вина. Формула Рэлея-Джинса и
		Планка для спектральной плотности энергетиче-ской
		светимости черного тела. Оптическая пирометрия.
		Тепловые источни-ки света. Виды фотоэффекта. Законы
		внешнего фотоэффекта. Гипотеза Эйнштейна. Уравнение
		Эйнштейна для внешнего фотоэффекта. Примене-ние
		фотоэффекта в технике. Масса и импульс фотона. Давление
		света. Эф-фект Комптона. Единство корпускулярных и
		волновых свойств электро-магнитного излучения.

4.4	Физика атома	Опыты Резерфорда по рассеиванию □-частиц. Планетарная модель атома. Постулаты Бора. Квантование энергии и
		момент импульса электронов в атоме. Линейчатые спектры
		атомов. Спектр атома водорода по Бору. Квантовые числа.
		Спин электрона. Строение электронных оболочек слож-ных
		атомов. Принцип Паули. Периодическая система элементов
		Д.И. Мен-делеева.