Документ подписан простой электронной подписью

Информация о владельце: ФИО: Сыров Игорь Анатольевич

СТЕРЛИТАМАКСКИЙ ФИЛИАЛ

Должность: Дирек В ДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО Дата подписания: 25.11.2022 08:47:20
Учикальный программный ключ: Учикальный программный ключ: «Уфимский университет на уки и технологий»

ь683afe664d7e9f64175886cf9626a19414-2000 УНИВЕРСИТЕТ НАУКИ И ТЕХНОЛОГИЙ»

Факультет <i>Естественнонаучный</i>		
Кафедра	Общей и теоретической физики	
	Аннотация рабочей программы дисциплины (модуля)	
дисциплина	Б1.О.18 Теоретическая механика; механика сплошных сред	
	обязательная часть	
	Специальность	
21.05.05	Физические процессы горного или нефтегазового производства	
код	наименование специальности	
	Программа	
специа.	лизация N 2 "Физические процессы нефтегазового производства"	
	Форма обучения	
	Заочная	
	Для поступивших на обучение в	
	2022 г.	

Стерлитамак 2022

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций

Формунуется	Год и мамилически	Donum many a of virginia wa
Формируемая	Код и наименование	Результаты обучения по
компетенция (с	индикатора достижения	дисциплине (модулю)
указанием кода)	компетенции	05
ОПК-20. Способен	ОПК-20.1. Выстраивает	Обучающийся должен знать:
понимать принципы	профессиональную	способы описания движения
работы современных	деятельность опираясь на	сплошной среды; основные
информационных	основы информационных	характеристики напряженно-
технологий и	технологий и	деформируемого состояния
использовать их для	программные продукты.	сплошной среды.
решения задач		
профессиональной	ОПК-20.2. Использует	Обучающийся должен уметь:
деятельности	современные	строить полные системы
	информационные	уравнений, описывающих
	технологии и	поведение конкретной среды,
	программные продукты	ставить для них краевые и
	для решения задач	начальные условия, выбирать
	профессиональной	метод решения поставленной
	деятельности.	задачи.
	ОПК-20.3. Применяет	Обучающийся должен владеть:
	методы информационных	навыками работы со справочной
	технологий для решения	литературой и другими
	задач профессиональной	источниками информации;
		навыками оформления учебной
	деятельности с	
	использованием	документации.
	полученных знаний в	
	области фундаментальных	
OFFICE C	и прикладных наук.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ОПК-5. Способен	ОПК-5.1. Владеет	Обучающийся должен знать:
работать с программным	современным	экспериментальные основы
обеспечением общего,	программным	теоретической механики и
специального	обеспечением общего,	механики сплошных сред;
назначения и	специального назначения и	основные положения
моделирования горных и	моделирования горных и	теоретической механики и
геологических объектов	геологических объектов.	механики сплошных сред;
		уравнения Гамильтона как
		основное уравнение
		теоретической механики и
		свойства его решений.
		-
	ОПК-5.2. Использует	Обучающийся должен уметь:
	функционал и	различать круг задач, которые
	инструменты	можно решить только методами
	компьютерных систем для	теоретической механики, от
	решения	задач, решаемых на основе
	профессиональных задач.	классической физики; применять
	профессиональных зада і.	уравнения Гамильтона для
		изучения свойств простейших
		_
		микросистем.

ОПК-5.3. Использует в профессиональной деятельности программные обеспечения общего, специального назначения и моделирования горных и геологических объектов.	Обучающийся должен владеть: навыками составления математических моделей задач теоретической механики; способностью и заинтересованностью использования в практической деятельности знаний закономерностей механики сплошной среды, самостоятельно изучать и понимать специальную (отраслевую) научную и методическую литературу, связанную с проблемами
	сплошной среды, самостоятельно изучать и понимать специальную (отраслевую) научную и

2. Цели и место дисциплины (модуля) в структуре образовательной программы

Цели изучения дисциплины:

является приобретение знаний в области теоретической механики, позволяющие профессионально решать научно — производственные задачи, связанные с механическим движением, формирование научного мировоззрения, развитие аналитического и логического мышления, расширение кругозора у студентов. Основной задачей механики сплошных сред является научить, на основе выработки теоретических представлений решать задачи для идеальной жидкости, вязкой жидкости, пограничного слоя жидкости, распространения ударных и детонационных волн, задачи на теорию упругости: закон Гука, тензоры деформации, поворота и напряжения, уравнения движения упругого тела, условие равновесия упругого тела.

Дисциплина реализуется в рамках обязательной части.

Для освоения дисциплины необходимы компетенции, знания и умения сформированные в рамках дисциплин Механика, Молекулярная физика, Математические методы физики.

Дисциплина изучается на 2, 3 курсах в 4, 5 семестрах

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 216 акад. ч.

	Всего часов
Объем дисциплины	Заочная форма
	обучения
Общая трудоемкость дисциплины	216
Учебных часов на контактную работу с преподавателем:	
лекций	8
практических (семинарских)	14

другие формы контактной работы (ФКР)	1,4
Учебных часов на контроль (включая часы подготовки):	11,6
экзамен	
Учебных часов на самостоятельную работу обучающихся	181
(CP)	

Формы контроля	Семестры	
экзамен	5	

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№	Наименование раздела / темы	Виды учебных занятий, включая самостоятельную работу обучающихся и трудоемкость (в часах)			
п/п	дисциплины	Контактная работа с преподавателем			СР
		Лек	Пр/Сем	Лаб	
1	ВАРИАЦИОННЫЙ ПРИНЦИП В МЕХАНИКЕ	2	4	0	32
1.1	Вариационный принцип в механике. Связи в механике	0	0	0	8
1.2	Уравнение движения в декартовых координатах	0	0	0	8
1.3	Уравнение Лагранжа в обобщенных координатах. Функция Лагранжа и энергия	2	4	0	8
1.4	Составление уравнения Лангранжа. Принцип наименьшего действия	0	0	0	8
2	ЗАКОНЫ СОХРАНЕНИЯ	0	0	0	16
2.1	Сохранение энергии	0	0	0	8
2.2	Сохранение импульса. Сохранение момента импульса	0	0	0	8
3	НЕКОТОРЫЕ ЗАДАЧИ МЕХАНИКИ	2	2	0	23
3.1	Движение в поле центральной силы. Задача 2-х тел	2	2	0	6
3.2	Упругие столкновения частиц	0	0	0	6
3.3	Рассеяние частиц	0	0	0	6
3.4	Движение в неинерциальных системах отсчета	0	0	0	5
4	МАЛЫЕ КОЛЕБАНИЯ	0	0	0	28
4.1	Свободные колебания системы без трения	0	0	0	16
4.2	Затухающие колебания. Вынужденные колебания.	0	0	0	6
4.3	Колебания системы со многими степенями свободы. Связанные	0	0	0	6

	маятники				
5	МЕХАНИКА ТВЕРДОГО ТЕЛА	0	0	0	18
5.1	Кинематика твердого тела.	0	0	0	6
	Эйлеровы углы				
5.2	Тензор инерции. Момент импульса	0	0	0	6
	твердого тела. Свободные оси				
	вращения				
5.3	Уравнения движения твердого тела.	0	0	0	6
	Уравнения Эйлера				
6	КАНОНИЧЕСКИЕ УРАВНЕНИЯ	2	4	0	18
6.1	Уравнения Гамильтона	2	4	0	6
6.2	Скобки Пуассона	0	0	0	6
6.3	Уравнения Гамильтона – Якоби	0	0	0	6
7	МЕХАНИКА СПЛОШНЫХ	2	4	0	46
	СРЕД				
7.1	Математический аппарат механики	0	0	0	4
	сплошных сред				
7.2	Модель сплошная среда.	0	0	0	4
	Кинематика сплошной среды				
7.3	Основы динамики сплошной среды.	2	4	0	6
	Дифференциальные уравнения				
	движения				
7.4	Идеальная сплошная среда	0	0	0	6
7.5	Вязкая сплошная среда	0	0	0	6
7.6	Методы подобия и размерности	0	0	0	6
7.7	Ламинарные и турбулентные	0	0	0	8
	течения				
7.8	Явления переноса	0	0	0	6
	Итого	8	14	0	181

4.2. Содержание дисциплины, структурированное по разделам (темам)

Курс лекционных занятий

№	Наименование раздела /	Содержание
	темы дисциплины	
1	ВАРИАЦИОННЫЙ ПРИН	ЩИП В МЕХАНИКЕ
1.3	Уравнение Лагранжа в	Декартовы координаты. Уравнения движения Ньютона.
	обобщенных координатах.	Число степеней свободы. Потенциал системы. Силы.
	Функция Лагранжа и	Обобщенные координаты. Функция Лагранжа.
	энергия	Уравнение Лагранжа. Обобщенные силы, импульс,
		потенциал. Функция Лагранжа. Энергия. Теорема о
		сохранении энергии. Диссипативная функция Релея.
		Конфигурационное пространство. Интеграл движения
3	НЕКОТОРЫЕ ЗАДАЧИ МЕХАНИКИ	
3.1	Движение в поле	Центральное поле силы. Функция Лагранжа для
	центральной силы. Задача	центрального поля силы. Траектория частицы.
	2-х тел	Циклические координаты. Уравнение траектории
		движения частицы в центральном поле сил. Траектория
		частицы. Движение 2-х тел в поле центральной силы.
		Поиск траектории движение 2-х тел в поле центральной
		силы. Возможные случаи движения.
		Дифференциальное эффективное сечение рассеяния.

		Формула Резерфорда для рассеяния ⊔-частиц на	
		тяжелых ядрах	
6	КАНОНИЧЕСКИЕ УРАВНЕНИЯ		
6.1	Уравнения Гамильтона	Функция Гамильтона. Вывод уравнения Гамильтона	
7	МЕХАНИКА СПЛОШНЫ	Х СРЕД	
7.3	Основы динамики	Модель сплошной среды (континуума). Лагранжево и	
	сплошной среды.	Эйлерово описания движения сплошной среды.	
	Дифференциальные	Уравнение неразрывности в переменных Эйлера и	
	уравнения движения	Лагранжа. Тензор деформаций. Тензор скоростей	
		деформации. Теорема Коши-Гельмгольца. Силы и	
		напряжения в механики сплошных сред. Массовые и	
		поверхностные силы в механики сплошных сред.	
		Тензор напряжений. Модели сплошных сред.	
		Дифференциальные уравнения движения в механике	
		сплошных сред. Общее уравнение движения	
		сплошной среды. Замкнутая система уравнений	
		движения сплошной среды	

Курс практических/семинарских занятий

№	Наименование раздела /	Содержание		
	темы дисциплины			
1	ВАРИАЦИОННЫЙ ПРИНЦИП В МЕХАНИКЕ			
1.3	Уравнение Лагранжа в	Решение задач по теме. Уравнение Лагранжа.		
	обобщенных координатах.	Обобщенные силы, импульс, потенциал. Теорема о		
	Функция Лагранжа и	сохранении энергии. Диссипативная функция Релея.		
	энергия	Интеграл движения		
3	НЕКОТОРЫЕ ЗАДАЧИ МІ	ЕХАНИКИ		
3.1	Движение в поле	Решение задач по теме. Уравнение траектории		
	центральной силы. Задача	движения частицы в центральном поле сил. Поиск		
	2-х тел	траектории движение 2-х тел в поле центральной силы.		
6	КАНОНИЧЕСКИЕ УРАВН	ЕНИЯ		
6.1	Уравнения Гамильтона	Решение задач по теме. Получение уравнения		
		Гамильтона. Построение Гамильтониана по		
		Лагранжиану. Построение Лагранжиана по		
		Гамильтониану		
7	МЕХАНИКА СПЛОШНЫХ	АНИКА СПЛОШНЫХ СРЕД		
7.3	Основы динамики	Решение задач и обсуждение теоретических вопросов		
	сплошной среды.	по теме. Массовые и поверхностные силы в		
	Дифференциальные	механики сплошных сред. Тензор напряжений.		
	уравнения движения	Модели сплошных сред. Решение задач и обсуждение		
		теоретических вопросов по теме. Общее уравнение		
		движения сплошной среды. Замкнутая система		
		уравнений движения сплошной среды		