Документ подписан простой электронной подписью

Информация о владельце: ФИО: Сыров Игорь Анатольевич

СТЕРЛИТАМАКСКИЙ ФИЛИАЛ

Должность: Дирекфе дерального государственного бюджетного образовательного дата подписания: 27.06.2022 15:05:43
Учреждения высшего образования
Уникальный программный ключ:

режения программным ключ: b683afe664d7e9f64175886cf9626a1% (14)ad36 ИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет	Естественнонаучный
Кафедра	Технологии и общетехнических дисциплин

Аннотация рабочей программы дисциплины (модуля)

Б1.0.26 Теплотехника	
-	

Стерлитамак 2022

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций

Формируемая	Код и наименование	Результаты обучения по
компетенция (с	индикатора достижения	дисциплине (модулю)
указанием кода)	компетенции	
ОПК-1. Способен	ОПК-1.1. Знает теорию и	Обучающийся должен: знать
применять	основные законы в	основные понятия и законы
естественнонаучные и	области	технической термодинамики,
общеинженерные знания,	естественнонаучных и	основные процессы идеального
методы математического	общеинженерных	газа, водяного пара; циклы
анализа и моделирования в	дисциплин.	тепловых двигателей и
профессиональной		теплосиловых установок;
деятельности;		основные законы теплообмена;
		устройство и принцип действия
		тепловых машин и аппаратов;
		виды топлива и источники
		энергии, экологические вопросы
		энергетики.
	ОПК-1.2. Умеет	Обучающийся должен: уметь
	применять методы	применять методы расчетов по
	математического анализа	технической термодинамике и
	и моделирования в	теплопередаче, работать со
	профессиональной	справочной литературой,
	деятельности.	объяснять устройство и принцип
		действия тепловых машин и
		аппаратов.
	ОПК-1.3. Умеет	Обучающийся должен: владеть
	применять методы	навыками теплотехнических
	теоретического и	расчетов, работы со справочной
	экспериментального	литературой.
	исследования в	1 71
	профессиональной	
	деятельности.	

2. Цели и место дисциплины (модуля) в структуре образовательной программы

Цели изучения дисциплины:

Дисциплина «Теплотехника» относится к обязательной части.

Цели изучения дисциплины:

- 1. Создание условий для формирования знаний законов получения, преобразования и переноса теплоты, устройства и принципа действия тепловых машин и агрегатов.
- 2. Создание условий для формирования навыков теплотехнических расчетов, работы со справочной литературой.
- 3. Развитие технического мышления.

Дисциплина изучается на 3, 4 курсах в 6, 7 семестрах

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 180 акад. ч.

Объем дисциплины	Всего часов Заочная форма обучения
Общая трудоемкость дисциплины	180
Учебных часов на контактную работу с преподавателем:	
лекций	10
практических (семинарских)	
лабораторных	8
другие формы контактной работы (ФКР)	1,4
Учебных часов на контроль (включая часы подготовки):	11,6
зачет	
экзамен	
Учебных часов на самостоятельную работу обучающихся (CP)	149

Формы контроля	Семестры
зачет	6
экзамен	7

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№	Наименование раздела / темы	самостоя	ы учебных заня ятельную работ трудоемкость (у обучаюц (в часах)	
п/п	дисциплины		Контактная работа с		СР
		Лек	преподавателем Пр/Сем	Лаб	CP
2.1	Способы распространения тепла и виды теплообмена. Теплопроводность.	1	0	2	12
2.2	Конвективный теплообмен и излучение.	1	0	2	12
2.3	Сложный теплообмен. Расчет теплообменных аппаратов.	0	0	2	15
3	Тепловые машины и теплоэнергетические установки.	0	0	0	40
1.4	Водяной пар и термодинамические циклы паросиловых установок.	2	0	0	12
3.2	Теплоэнергетические установки.	0	0	0	20
4	Экологические вопросы	0	0	0	24

	энергетики.				
4.1	Источники энергии и топливные	0	0	0	12
	ресурсы.				
4.2	Источники энергии и топливные	0	0	0	12
	ресурсы.				
1.3	Круговые процессы. Циклы	2	0	2	12
	поршневых двигателей внутреннего				
	сгорания (ДВС).				
1.2	Первый закон термодинамики и его	2	0	0	12
	приложение к термодинамическим				
	процессам.				
1.1	Основные понятия термодинамики.	2	0	0	10
1	Техническая термодинамика	8	0	2	46
2	Теория теплообмена	2	0	6	39
3.1	Тепловые машины.	0	0	0	20
	Итого	10	0	8	149

4.2. Содержание дисциплины, структурированное по разделам (темам)

Курс лекционных занятий

N₂	Наименование раздела /	Содержание
	темы дисциплины	
2.1	Способы распространения	Способы переноса тепла. Теплообмен,
	тепла и виды теплообмена.	теплопроводность, конвекция, свободная конвекция,
	Теплопроводность.	вынужденная конвекция, излучение. Изотермическая
		поверхность, коэффициент теплопроводности.
		Основной закон теплопроводности. Теплопроводность
		плоской однослойной стенки при стационарном
		режиме. Теплопроводность плоской многослойной
		стенки при стационарном режиме. Теплопроводность
		цилиндрической стенки при стационарном режиме.
2.2	Конвективный теплообмен	Общие понятия и определения. Основы теории
	и излучение.	подобия. Теплоотдача при вынужденном движении
		жидкости. Теплоотдача при свободном движении
		жидкости. Теплообмен излучением. Оптические
		свойства тел. Степень черноты. Основные законы
		теплового излучения. Закон Стефана-Больцмана.
1.4	Водяной пар и	Водяной пар, испарение, кипение, сухой насыщенный
	термодинамические циклы	пар, перегретый пар. Процесс парообразования на Pv-
	паросиловых установок.	диаграмме. Энтальпия водяного пара. Ts-, Is-
		диаграммы водяного пара. Графоаналитический расчет
		процессов с водяным паром. Паротурбинная установка.
		Цикл Ренкина, цикл Карно. Типы паровых турбин.
1.3	Круговые процессы. Циклы	Круговые процессы. Полезная работа, полезная
	поршневых двигателей	теплота. Цикл теплового двигателя. Цикл холодильной
	внутреннего сгорания	установки. І закон термодинамики для круговых
	(ДВС).	процессов. Цикл Карно. ІІ закон термодинамики.
		Теплоотдатчик, теплоприемник. Вечный двигатель
		второго рода. Термический КПД цикла.
		Циклы ДВС. Двигатель внутреннего сгорания,
		теоретическая диаграмма идеального двигателя.
		Рабочий ход поршня, верхняя мертвая точка, нижняя

		мертвая точка, камера сгорания, внутреннее смесеобразование, внешнее смесеобразование. Цикл Дизеля, цикл Отто, цикл Тринклера. Степень сжатия, степень повышения давления, коэффициент предварительного расширения. Сравнение циклов ДВС, недостатки ДВС.
1.2	Первый закон термодинамики и его приложение к термодинамическим процессам.	Вычисление работы деформации газа. Теплоемкость. Удельная теплоемкость, молярная теплоемкость. Изохорная теплоемкость. Изобарная теплоемкость. Вычисление теплоты. Внутренняя энергия. Термодинамические процессы: изометрический, изобарный, изохорный, адиабатный, политропный. Энтальпия, энтропия, I закон термодинамики. Измерение внутренней энергии рабочего тела. Исследование термодинамических процессов.
1.1	Основные понятия термодинамики.	Техническая термодинамика. Теория теплообмена. Тепловые машины. Теплоэнергетические установки. Идеальный газ. Термодинамическая система, рабочее тело, термодинамические процессы. Уравнение состояния идеального газа. Термодинамическая система изолированная, адиабатная, закрытая, открытая, теплота и работа, параметры, параметры состояния, равновесный процесс, неравновесный процесс, удельный объем, абсолютное давление, абсолютная температура.
1	Техническая термодинами	
2	Теория теплообмена	

Курс лабораторных занятий

71		
№	Наименование раздела / темы	Содержание
	дисциплины	
2.1	Способы распространения тепла и	Лабораторная работа №2. Определение
	виды теплообмена.	параметров водяного пара с помощью Is-
	Теплопроводность.	диаграммы.
2.2	Конвективный теплообмен и	Лабораторная работа № 3. Определение
	излучение.	коэффициента теплопроводности материала
		стенки трубы.
2.3	Сложный теплообмен. Расчет	Лабораторная работа № 4. Определение
	теплообменных аппаратов.	коэффициента теплоотдачи горизонтальной
		трубы при свободном движении воздуха.
1.3	Круговые процессы. Циклы	Лабораторная работа №1. Определение
	поршневых двигателей внутреннего	основных параметров характерных точек цикла
	сгорания (ДВС).	Отто и рабочего объема ДВС.
1	Техническая термодинамика	
2	Теория теплообмена	