СТЕРЛИТАМАКСКИЙ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет	Естественнонаучный	
Кафедра <i>Химии и химической технологии</i>		
Aı	нотация рабочей программы дисциплины (модуля)	
дисциплина	Химические реакторы	
	Блок Б1, вариативная часть, Б1.В.12	
цикл д	исциплины и его часть (базовая, вариативная, дисциплина по выбору)	
	Подраж овиче	
	Направление	
18.03.01	Химическая технология	
код	наименование направления	
	H	
	Программа	
	Технология и переработка полимеров	
	* C	
	Форма обучения	
	Заочная	
	340 III.	
	Для поступивших на обучение в	
	2020 г.	

Стерлитамак 2022

1. Перечень планируемых результатов обучения по дисциплине (модулю)

1.1. Перечень планируемых результатов освоения образовательной программы

Выпускник, освоивший программу высшего образования, в рамках изучаемой дисциплины, должен обладать компетенциями, соответствующими видам профессиональной деятельности, на которые ориентирована программа:

Способностью и готовностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности (ОПК-1)

Готовностью к освоению и эксплуатации вновь вводимого оборудования (ПК-8)

Способностью выявлять и устранять отклонения от режимов работы технологического оборудования и параметров технологического процесса (ПК-11)

1.2. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Формируемая компетенция	Этапы	Планируемые результаты
(с указанием кода)	формирования	обучения по дисциплине (модулю)
	компетенции	
Готовностью к освоению и	1 этап: Знания	Обучающийся должен знать:
эксплуатации вновь вводимого		• типы реакторов и режимы их
оборудования (ПК-8)		работы;
		• основы теории процесса в
		химическом реакторе;
		• методику выбора реактора и
		расчета процесса в нем.
	2 этап: Умения	Обучающийся должен уметь:
		• произвести выбор типа
		реактора и произвести расчет
		технологических параметров для
		заданного процесса;
		• определить параметры
		наилучшей организации процесса в
		химическом реакторе.
	3 этап: Владения	Обучающийся должен владеть:
	(навыки / опыт	• методами расчета и анализа
	деятельности)	процессов в химических реакторах,
		определения технологических
		показателей процесса;
		• навыками построения
		технологических схем на основе
		выбранного химического реактора;
		• инженерными методами
		расчёта реакторов при
		проектировании производств.
Способностью выявлять и	1 этап: Знания	Обучающийся должен знать:
устранять отклонения от		• показатели эффективности и
режимов работы		параметры работы реактора;
технологического		• основы теории
оборудования и параметров		моделирования реакторов и
технологического процесса		построения кинетических моделей
(ПК-11)		химических систем;
		• конструкционные
		особенности химических реакторов

		и способы обеспечения
		технологического режима
	2 77	реакторов.
	2 этап: Умения	Обучающийся должен уметь:
		выполнять расчёт параметров
		технологического режима процесса
		в реакторе.
	3 этап: Владения	Обучающийся должен владеть:
	(навыки / опыт	• методами анализа влияния
	деятельности)	различных факторов на параметры
	, ,	процесса в химическом реакторе.
Способностью и готовностью	1 этап: Знания	Обучающийся должен знать:
использовать основные законы	1 0 100111 0110111111	• общие закономерности
естественнонаучных		химических процессов;
дисциплин в		• методологию исследования
профессиональной		взаимодействия процессов
		<u> -</u>
деятельности (ОПК-1)		химического превращения и
		явлений переноса на всех
		масштабных уровнях;
		• основные реакционные
		процессы и реакторы химической
		технологии.
	2 этап: Умения	Обучающийся должен уметь:
	2 Stair. 5 Mellin	• использовать основные
		химические законы,
		термодинамические справочные
		данные и количественные
		соотношения химии для решения
		профессиональных задач;
		• рассчитывать основные
		характеристики химического
		процесса;
		• выполнять типовой расчёт
		конструктивных параметров
		химического реактора на основе
		разработанной модели и параметров
		технологического режима процесса
		в реакторе.
	3 этап: Владения	Обучающийся должен владеть:
	(навыки / опыт	• методами определения
	деятельности)	оптимальных и рациональ-ных
	,	технологических режимов работы
		оборудования;
		• методами выбора
		химических реакторов;
		• навыками расчета
		материального и теплового ба-
		=
		лансов химического реактора;
		• методами составления
		математических моделей типовых
		химико-технологических процессов,
		исходя из имеющихся физико-

	химических данных об этих
	процессах.

2. Место дисциплины (модуля) в структуре образовательной программы

Изучение дисциплины «Химические реакторы» требует основных знаний, умений и компетенций студента по курсам физики, теоретической механики и физической химии. Дисциплина представляет собой взаимосвязь между общенаучными, общехимическими, общеинженерными и профильными дисциплинами.

Для освоения дисциплины необходимы компетенции, сформированные в рамках изучения следующих дисциплин: «Общая и неорганическая химия», «Коллоидная химия», «Математика», «Инженерная графика», «Прикладная механика», «Органическая химия», «Физическая химия».

Лиспиплины. лля освоение данной дисциплины необходимо которых химико-технологическими предшествующее: «Системы управления процессами», «Моделирование химико-технологическим процессом», «Технология конструкционных «Технология переработки полимеров», «Оборудование производства полимерных изделий», «Реакционная способность и модификация полимеров», «Защита выпускной квалификационной работы, включая подготовку к процедуре защиты и процедуру защиты».

Дисциплина изучается на 3, 4 курсах в 6, 7 семестрах

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 108 акад. ч.

Объем дисциплины	Всего часов Заочная форма обучения
Общая трудоемкость дисциплины	108
Учебных часов на контактную работу с преподавателем:	
лекций	8
практических (семинарских)	12
другие формы контактной работы (ФКР)	2
Учебных часов на контроль (включая часы подготовки):	3,8
зачет	
Учебных часов на самостоятельную работу обучающихся (CP)	82,2

Формы контроля	Семестры
зачет	7

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№ п/п	Наименование раздела / темы дисциплины	Виды учебных занятий, включая самостоятельную работу обучающихся и трудоемкость (в часах) Контактная работа с преподавателем			
		Лек	Пр/Сем	Лаб	CP
1.5	Особенности расчета каталитических реакторов	2	3	0	14,2
1.4	Промышленные химические реакторы	2	3	0	20
1.3	Химические процессы и реакторы	2	4	0	18
1.2	Вычислительный эксперимент и адекватность моделей	1	2	0	16
1.1	Введение. Понятие химических процессов и реакторов	1	0	0	14
1	Химические реакторы	8	12	0	82,2
	Итого	8	12	0	82,2

4.2. Содержание дисциплины, структурированное по разделам (темам)

Курс практических/семинарских занятий

N₂	Наименование раздела	Содержание
	/ темы дисциплины	
1.5	Особенности расчета	Расчет производительности, объема, скорости потока,
	каталитических	поверхности теплообмена, гидравлического
	реакторов	сопротивления, скорости замены катализатора и
		конструктивных параметров каталитических реакторов.
		Расчет полей температуры и концентрации, определение
		оптимальной схемы теплообмена и рециркуляции, анализ
		устойчивости режима реактора с помощью ЭВМ.
1.4	Промышленные	Изучение классификации химических реакторов.
	химические реакторы	
1.3	Химические процессы и	Изучение классификации химически стойких материалов
	реакторы	для получения химических реакторов.
		Разновидности химически стойких материалов для
		производства химических реакторов.
		Изучение методики определения основных свойств
		(кислото-стойкости, водопоглощения, предела прочности,
		термической стойкости) химически стойких материалов.
1.2	Вычислительный	Общие сведения о химически стойких материалах для
	эксперимент и	получения химических реакторов.
	адекватность моделей	
1	Химические реакторы	

№	Наименование раздела / темы дисциплины	Содержание
1.5	Особенности расчета	Составление ориентировочной таблицы распределения
	каталитических	выходов и температур по полкам. Вычисление констант
	реакторов	равновесия, определение равновесного выхода и построение
		равновесной кривой. Расчет оптимальных температур для
		каждой стадии процесса. Составление материального
		баланса для реактора в целом и по стадиям катализа.
		Определение объема газа и его компонентов на входе в
		реактор, на выходе и на каждой стадии процесса.
		Определение гидродинамических параметров работы
		реактора. Определение объема загружаемого катализатора
		по стадиям процесса (полкам) и по всему реактору.
		Определение основных размеров реактора – площади
		сечения внутреннего диаметра, высоты неподвижного слоя
		по данным материального баланса, по найденным значениям
		рабочих скоростей газа, объема катализатора, оптимальных
		температур. Определение гидравлического сопротивления
		слоев катализатора и реактора. Составление теплового
		баланса по полкам реактора.
1.4	Промышленные	Общие замечания о расчете химических реакторов.
	химические реакторы	Оптимизация химических процессов и реакторов.
		Конструктивные элементы химических реакторов. Схемы и
		конструкции промышленных химических реакторов.
1.3	Химические процессы	Физико-химические основы химических процессов.
	и реакторы	Гомогенные химические процессы. Гетерогенные
		химические процессы. Каталитический химический процесс.
		Процессы в химическом реакторе. Режимы идеального
		смещения. Режимы идеального вытеснения.
		Изотермический процесс в химическом реакторе.
1.0	D	Неизотермический процесс в химическом реакторе.
1.2	Вычислительный	Основы классификация методов исследований. Натурные и
	эксперимент и	модельные исследования. Стадии натурных исследований.
	адекватность моделей	Пассивный и активный эксперимент. Физическое и
1 1	D H	математическое моделирование. Адекватность моделей.
1.1	Введение. Понятие	Основные понятия и определения. Предмет дисциплины.
	химических процессов	Значение химических реакторов и процессов в научных
	и реакторов	исследованиях и промышленной практике.
1	Химические реакторы	