СТЕРЛИТАМАКСКИЙ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет	Естественнонаучный	
Кафедра	Химии и химической технологии	
	Рабочая программа дисциплины (модуля)	
дисциплина	Физическая химия	
	Блок Б1, базовая часть, Б1.Б.10	
цикл дисі	циплины и его часть (базовая, вариативная, дисциплина по выбору)	
	Направление	
18.03.01	Химическая технология	
код	наименование направления	
	Программа	
	1 1	
	Технология и переработка полимеров	
	технология и перериоотки полимеров	
	Форма обучения	
	Заочная	
	Пла неодинульнум ме объемому в	
	Для поступивших на обучение в	
	2020 Γ.	
Разработчик (состави	тель)	
к.х.н., доцент	<i>,</i>	
Колчина Г. Ю.		
ученая степень, должност	ь фио	
у топил отопопо, должпост	D, T110	

1. I	Геречень планируемых результатов обучения по дисциплине (модулю) 3
	1.1. Перечень планируемых результатов освоения образовательной программы3
	1.2. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы .3
2. N	Лесто дисциплины (модуля) в структуре образовательной программы4
ака обу	Объем дисциплины (модуля) в зачетных единицах с указанием количества демических или астрономических часов, выделенных на контактную работу чающихся с преподавателем (по видам учебных занятий) и на самостоятельную боту обучающихся
ука	Содержание дисциплины (модуля), структурированное по темам (разделам) с занием отведенного на них количества академических часов и видов учебных ятий4
	4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)
	4.2. Содержание дисциплины, структурированное по разделам (темам)5
	учебно-методическое обеспечение для самостоятельной работы обучающихся по ециплине (модулю)7
6. Y	$^{\prime}$ чебно-методическое и информационное обеспечение дисциплины (модуля)7
	6.1. Перечень учебной литературы, необходимой для освоения дисциплины7
	6.2. Перечень электронных библиотечных систем, современных профессиональных баз данных и информационных справочных систем

1. Перечень планируемых результатов обучения по дисциплине (модулю)

1.1. Перечень планируемых результатов освоения образовательной программы

Выпускник, освоивший программу высшего образования, в рамках изучаемой дисциплины, должен обладать компетенциями, соответствующими видам профессиональной деятельности, на которые ориентирована программа:

Готовностью использовать знания о современной физической картине мира, пространственно-временных закономерностях, строении вещества для понимания окружающего мира и явлений природы (ОПК-2)

Готовностью использовать знания основных физических теорий для решения возникающих физических задач, самостоятельного приобретения физических знаний, для понимания принципов работы приборов и устройств, в том числе выходящих за пределы компетентности конкретного направления (ПК-19)

1.2. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Формируемая компетенция (с указанием кода)	Этапы формирования компетенции	Планируемые результаты обучения по дисциплине (модулю)
Готовностью использовать знания о современной физической картине мира, пространственно-временных закономерностях, строении вещества для понимания окружающего мира и явлений природы (ОПК-2)	1 этап: Знания	Обучающийся должен знать: основные естественнонаучные законы и закономерности развития химической науки
ивлении природы (ОПК-2)	2 этап: Умения	Обучающийся должен уметь: применять основные естественнонаучные законы и закономерности развития химической науки при анализе полученных результатов
	3 этап: Владения (навыки / опыт деятельности)	Обучающийся должен владеть: способностью применять основные естественнонаучные законы и закономерности развития химической науки при анализе полученных результатов
Готовностью использовать знания основных физических теорий для решения возникающих физических задач, самостоятельного	1 этап: Знания	Обучающийся должен знать: систему фундаментальных химических понятий
приобретения физических знаний, для понимания принципов работы приборов и устройств, в том числе выходящих за пределы компетентности конкретного	2 этап: Умения	Обучающийся должен уметь: использовать систему фундаментальных химических понятий
направления (ПК-19)	3 этап: Владения (навыки / опыт	Обучающийся должен владеть: системой фундаментальных

деятельности)	химических понятий

2. Место дисциплины (модуля) в структуре образовательной программы

- сформировать у студентов теоретические знания и навыки практического исследования в области физической химии;
- подготовить студентов к самостоятельной работе в области физической химии.
 Задачи дисциплины:
- сформировать у студентов знания теоретических основ физической химии;
- развить умения студентов в применении теоретических основ физической химии для расчетов термодинамических свойств физико-химических систем и характеристик протекающих в них процессов;
- развить умения студентов в использовании знания физической химии для проведения физико-химического эксперимента;
- развить у студентов навыки работы с учебной и научной литературой.

Дисциплина изучается на 4, 5 курсах в 8, 9 семестрах

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 288 акад. ч.

Объем дисциплины	Всего часов Заочная форма обучения
Общая трудоемкость дисциплины	288
Учебных часов на контактную работу с преподавателем:	
лекций	12
практических (семинарских)	
лабораторных	18
другие формы контактной работы (ФКР)	1,7
Учебных часов на контроль (включая часы подготовки):	7,8
экзамен	
Учебных часов на самостоятельную работу обучающихся (CP)	248,5

Формы контроля	Семестры	
экзамен	9	

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

J	No	Наименование раздела /	Виды учебных занятий, включая

п/п	темы дисциплины	самост	гоятельную рабо трудоемкост		щихся и
			онтактная работ преподавателем	a c	СР
		Лек	Пр/Сем	Лаб	
3.2	ЭДС, электродные	1	0	0	24
	потенциалы, гальванические				
	элементы				
3.1	Растворы электролитов	1	0	0	24
3	Электрохимия	2	0	0	48
2.3	Катализ	2	0	0	28
1.2	Первый закон термодинамики	1	0	9	24
1	Химическая термодинамика	6	0	18	124,5
1.1	Введение	1	0	9	24
2.2	Энергия активации.	1	0	0	24
	Переходное состояние.				
	Уравнение Аррениуса				
2.1	Основные понятия химической кинетики	1	0	0	24
2	Химическая кинетика	4	0	0	76
1.4	Третий закон термодинамики	1	0	0	24
1.3	Второй закон термодинамики	1	0	0	24
1.5	Химическое равновесие.	2	0	0	28,5
	Смещение химического				
	равновесия				
	Итого	12	0	18	248,5

4.2. Содержание дисциплины, структурированное по разделам (темам)

Курс лекционных занятий

№	Наименование	Содержание
	раздела / темы	
	дисциплины	
3.2	ЭДС, электродные	Электролиз. Гальванический элемент. Законы Фарадея.
	потенциалы,	Кулонометия. Число переноса ионов.
	гальванические	Равновесные электродные процессы. Электрод.
	элементы	Электрохимическая реакция. Электрохимические элементы.
		ЭДС гальванического элемента. Электродные потенциалы.
		Типы электродов. Электроды первого, второго и третьего
		рода. Окислительно-восстановительные электроды.
		Концентрационные элементы.
3.1	Растворы	Основные понятия электрохимии. Электролиты. Уравнение
	электролитов	химической реакции диссоциации. Электролитическая
		диссоциация. Степень диссоциации. Константа
		диссоциации. Закон разведения Оствальда. Явление
		солевого эффекта. Активность.
3	Электрохимия	
2.3	Катализ	Основные понятия (катализатор, положительный и
		отрицательный катализ, фермент, механизм действия,
		состояние равновесия, координата реакции, каталитическая
		активность, удельная каталитическая активность,
		гомогенный и гетерогенный катализ, селективность

		катализатора, ингибитор, ингибирование, энергия разрыва). Соотношение Бренстеда-Поляни. Кинетика гомогенного катализа. Уравнение Михаэлиса. Кислотно-основный катализ. Общий кислотный или основной катализ.
1.2	Первый закон термодинамики	Формулировки первого начала термодинамики. Понятия внутренней энергии, работы и теплоты. Теплоемкость термодинамической системы (удельная, молярная, средняя, истинная, изобарная, изохорная). Виды работ (работа расширения газа, электрохимическая, магнитная и т.д.).
		Расчет работы, теплоты и изменения внутренней энергии. Термохимия. Теплота реакции (тепловой эффект). Соотношение между тепловыми эффектами реакции при
		постоянном давлении и постоянном объеме для реакций между идеальными газами. Закон Гесса. Стандартная теплота образования вещества. Следствия из закона Гесса. Стандарная теплота сгорания вещества. Значение закона
		Гесса. Зависимость теплового эффекта от температуры. Закон Кирхгофа.
1	Химическая термодин	амика
1.1	Введение	Основные понятия
2.2	Энергия активации.	Формальная кинетика. Закон действующих масс. Основной
	Переходное	постудат химической кинетики. Зависимость скорости
	состояние. Уравнение	реакции от концентрации. Зависимость скорости реакции от
	Аррениуса	температуры. Энергия активации. Теория Аррениуса. Горение и взрыв. Горение. Взрыв. Цепной взрыв. Тепловой взрыв.
2.1	Основные понятия	Основные понятия химической кинетики (скорость
	химической кинетики	образования, скорость реакции, механизм ХР, элементарная стадия реакции, молекулярность, кинетическая кривая,
		открытая и закрытая системы). Активированный комплекс.
2	V	Гомо- и гетеролитические, гомо- и гетерофазные реакции.
1.4	Химическая кинетика Третий закон	Третье начало термодинамики (постулат Планка). Расчет
1.7	термодинамики	изменения энтропии при различных процессах (при фазовых
	тормодинамики	переходах, химических превращениях, нагревании вещества,
		изотермическом расширении газа). Термодинамические
		функции. Свободная энергия Гельмгольца. Свободная
		энергия Гиббса. Вычисление свободной энергии Гиббса
1.2	n v	двумя способами.
1.3	Второй закон	Самопроизвольные и несамопроизвольные процессы.
	термодинамики	Критерии самопроизвольного течения процесса. Формулировки второго начала термодинамики. Энтропия.
		Свойства энтропии. Статистическое толкование энтропии и
		второго начала термодинамики. Уравнение Больцмана.
1.5	Химическое	Закон действующих масс. Признаки химического
	равновесие. Смещение	равновесия. Способы выражения константы равновесия.
	химического	Уравнение изотермы химической реакции.
	равновесия	Термодинамическая теория химического сродства.
		Смещение химического равновесия. Уравнение Планка-Ван-Лаара. Химическое равновесие в случае реакций
		термодинамической диссоциации.

Основные понятия фазовых равновесий: фаза, фазовое
равновесие, фазовый переход, число степеней свободы,
компонент системы. Правило фаз Гиббса. Равновесие в
однокомпонентных системах. Диаграмма состояния воды.
Уравнение Клаузиуса-Клайперона.

Курс лабораторных занятий

No	Наименование раздела /	Содержание	
	темы дисциплины		
1.2	Первый закон	Калориметрический метод анализа. Определение	
	термодинамики	теплоемкости системы. Определение интегральной	
		теплоты растворения солей.	
1	Химическая термодинамика		
1.1	Введение	Инструктаж по технике безопасности.	

5. Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине (модулю)

Перечень тем для самостоятельного изучения:

- 1. Закон Гесса
- 2. Фазовые равновесия
- 3. Закон Рауля
- 4. Смещение химического равновесия
- 5. Межфазный катализ.
- 6. Классификация электродов.
- 7. Гальванический элемент.

Учебно-методическое обеспечение самостоятельной работы студентов

- 1. «Примеры решения задач по хим. кинетике и катализу: учеб. пособие студ. хим. спец.». Т. П. Мудрик Стерлитамак: изд-во СФ БашГУ, 2013. 91с.(кол-во-50 экз.).
- 2. А. Г. Стромберг, Д. П. Семченко «Физическая химия: Учеб. для студ. вузов, обучающихся по хим. специальностям». Под ред. А. Г. Стромберга 5-е изд., испр., М.: Высш. шк. 2003. 527с.(кол-во 20 экз.).
- 3. В. В. Еремин «Задачи по физической химии: Учеб. пособие для студ., обучающихся по спец. 011000- Химия и по направлению 510500- Химия». М.: Экзамен, 2003.-318с.(кол-во 24 экз.).
- 4. Основные теории и практики химической кинетики: учеб. пособие для самост. работы студ. по хим. спец». Т. П. Мудрик Стерлитамак: Изд-во СФ БашГУ, 2014. 91с.(кол-во-75 экз.).

6. Учебно-методическое и информационное обеспечение дисциплины (модуля)

6.1. Перечень учебной литературы, необходимой для освоения дисциплины Основная учебная литература:

- 1. Кудряшева Н. С., Бондарева Л. Г. Физическаяая химия: учеб. для бакалавров вузов.— М.: Юрайт, 2012. 340c. (Кол-во экземпляров: всего -25).
- 2. Основы физической химии: теория и задачи: учеб. пособие для студ. обучающихся по спец. 011000- Химия и по направлению 510500 Химия». В. В. Еремин; МГУ им. М. В. Ломоносова М.: Экзамен, 2005. 478с.(кол-во 20 экз.).

3. Стромберг А. Г., Семненко Д. П. Физическая химия: Учеб. для студ. вузов, обучающихся по хим. специальностям. Под ред. А. Г. Стромберга — 5-е изд., испр., - М.: Высш. шк. 2003. — 527с. (кол-во 20 экз.).

Дополнительная учебная литература:

- 1. Задачи по физической химии: учеб.пособие для студ.,обучающихся по спец.011000-Химия и по направлению 510500-Химия / В.В.Еремин, С.И.Каргов, И.А.Успенская и др. М.: Экзамен, 2005. 318с.: ил. (Кол-во экземпляров: всего 24).
- 2. Зимон, А.Д. Физическая химия: Учеб. для студ. технол. спец. вузов / А. Д. Зимон, Н. Ф. Лещенко. М.: Химия, 2000. 315с.: ил. (Кол-во экземпляров: всего 29).

6.2. Перечень электронных библиотечных систем, современных профессиональных баз данных и информационных справочных систем

№ п/п Наименование документа с указанием реквизитов