Документ подписан простой электронной подписью

Информация о владельце: ФИО: Сыров Игорь Анатольевич

СТЕРЛИТАМАКСКИЙ ФИЛИАЛ

Должность: Дирекфе дерального государственного Бюджетного образовательного Дата подписания: 30.10.2023 13:41:58

УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

Уникальный программный ключ: b683afe664d7e9f64175886cf9626af941MCKИЙ УНИВЕРСИТЕТ НАУКИ И ТЕХНОЛОГИЙ»

Факультет Естественнонаучный Кафедра Химии и химической технологии Рабочая программа дисциплины (модуля) Б1.О.12 Неорганическая химия дисциплина обязательная часть Направление 04.03.01 Химия наименование направления код Программа Фундаментальная и прикладная химия Форма обучения

2023 г.

Разработчик (составитель)

к.п.н., доцент

Файзуллина Н. Р.

ученая степень, должность, ФИО

Очная

Для поступивших на обучение в

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения	
компетенций	
2. Цели и место дисциплины (модуля) в структуре образовательной программы	.4
3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся	_
раооту обучающихся 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий	.5
4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)	.5
4.2. Содержание дисциплины, структурированное по разделам (темам)	.6
5. Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине (модулю)1	18
6. Учебно-методическое и информационное обеспечение дисциплины (модуля)1	وا
6.1. Перечень учебной литературы, необходимой для освоения дисциплины (модуля)	
6.2. Перечень электронных библиотечных систем, современных профессиональных баз данных и информационных справочных систем	19
6.3. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства	20
7. Материально-техническая база, необходимая для осуществления образовательног	
процесса по дисциплине (модулю)	20

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций

Формируемая компетенция (с указанием кода)	Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине (модулю)
ОПК-2. Способен проводить с соблюдением норм техники безопасности химический эксперимент, включая синтез, анализ, изучение структуры и свойств веществ и материалов, исследование процессов с их участием	ОПК-2.1. Работает с химическими веществами с соблюдением норм техники безопасности	Обучающийся должен: знать теоретические основы неорганической химии, лежащие в основе химического анализа, а также правила безопасной работы в химической лаборатории; различные методики синтеза неорганических веществ и материалов разной природы, с учетом имеющихся материальных и инструментальных ограничений
	ОПК-2.2. Проводит синтез веществ и материалов разной природы с использованием имеющихся методик	Обучающийся должен уметь: уметь использовать фундаментальные законы химии в процессе проведения химического анализа и синтеза, при изучении структуры и свойств веществ, использовать существующие методики получения веществ и материалов для решения задач профессиональной деятельности
	ОПК-2.3. Проводит исследования свойств веществ и материалов с использованием научного оборудования	Обучающийся должен владеть: навыками проведения химического эксперимента по установлению качественного и количественного состава, химических свойств, способов получения веществ и смесей с соблюдением норм техники безопасности, проведения исследования свойств веществ и материалов с использованием современного научного оборудования
ПК-2. Проведение научно- исследовательских работ по отдельным разделам темы	ПК-2.1. Знает методы проведения экспериментов и наблюдений, обобщения и обработки информации	Обучающийся должен знать: методы и средства планирования и организации научных исследований, методы анализа и обобщения отечественного и международного опыта в области исследований, методы проведения экспериментов и наблюдений, обобщения и обработки информации Обучающийся должен: уметь

результаты научно-исследовательских работ	оформлять результаты научноисследовательских работ, оформлять элементы техническойдокументации на основе внедрения результатов научноисследовательских работ, применять методы анализа научнотехнической информации
ПК-2.3. Проводит научно- исследовательские работы по отдельным разделам темы	Обучающийся должен: владеть методиками сбора, обработки, анализа и обобщения передового отечественного и международног о опыта в данной области исследование и проведение работ по формированию элементов технической документации на основе внедрения результатов научно-исследовательских работ

2. Цели и место дисциплины (модуля) в структуре образовательной программы

Цели изучения дисциплины:

Основной целью изучения дисциплины «Неорганическая химия» является развитие у мировоззрения, студентов химического овладение основными положениями неорганической химии и приобретение навыков работы с веществом. Дисциплина реализуется в рамках обязательной части. Курс «Неорганической химии» является начальным этапом профессиональной подготовки бакалавра-химика. Для ее изучения необходимы знания, умения и компетенции по химии, физике и математике в объеме, предусмотренном государственным образовательным стандартом среднего (полного) общего образования (базовый уровень). Теоретические аспекты, изученные в курсе «Неорганической химии», в основном, создают фундамент для обучения студентов дисциплинам - аналитической химии, органической химии, другим химическим физической и коллоидной химии, химической технологии, физико-химическим методам исследования и др. Без освоения этой дисциплины невозможно проведение научноисследовательской практики студента, выполнение научно-исследовательской работы.

Дисциплина изучается на 1 курсе в 1, 2 семестрах

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 17 зач. ед., 612 акад. ч.

067 014 711011111 711111	Всего часов
Объем дисциплины	Очная форма обучения
Общая трудоемкость дисциплины	612
Учебных часов на контактную работу с преподавателем:	
лекций	156
практических (семинарских)	
лабораторных	276
другие формы контактной работы (ФКР)	4,4
Учебных часов на контроль (включая часы подготовки):	69,6
экзамен	
курсовая работа	
Учебных часов на самостоятельную работу обучающихся (СР):	106
курсовая работа	

Формы контроля	Семестры
экзамен	1, 2
курсовая работа	2

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№ п/п	Наименование раздела / темы дисциплины	самост	цы учебных заня оятельную работ трудоемкость (у обучающих в часах)	
	,, , , ,		ая работа с препо	_	CP
-	X7	Лек	Пр/Сем	Лаб	= (
1	Химия элементов. Химия	72	U	130	56
	непереходных элементов				
1.1	Химия водорода и его	6	0	10	4
	соединений				
1.2	Химия галогенов и их	10	0	10	4
	соединений				
1.3	Химия кислорода и его	6	0	10	6
	соединений				
1.4	Химия серы и ее соединений	6	0	10	4
1.5	Подгруппа азота. Химия азота	6	0	10	4
	и его соединений				
1.6	Химия фосфора и его	6	0	10	4
	соединений				
1.7	Химия мышьяка, сурьмы,	5	0	10	4
	висмута.				
1.8	Подгруппа углерода. Химия	6	0	10	4

1.9	углерода и его соединений Химия кремния и его	6	0	10	4
1.7	соединения		U	10	
1.10	Подгруппа бора. Химия бора и	4	0	10	4
	его соединений				
1.11	Химия бериллия и магния	4	0	10	6
1.12	Химия щелочноземельных	3	0	10	4
	металлов и их соединений				
1.13	Химия щелочных металлов и	4	0	10	4
	их соединений				
2	Химия переходных металлов	84	0	146	50
2.1	Химия железа и его	6	0	10	4
	соединений				
2.2	Химия кобальта и их	4	0	10	4
	соединений				
2.3	Химия платиновых элементов	4	0	10	4
2.4	Химия марганца и его	6	0	6	4
	соединений				
2.5	Химия технеция и рения	4	0	10	2
2.6	Химия хрома и его	6	0	10	4
	соединений				
2.7	Химия молибдена и	6	0	10	4
	вольфрама				
2.8	Химия ванадия, ниобия,	6	0	10	2
	тантала				
2.9	Химия титана, циркония,	6	0	10	2
	гафния				
2.10	Химия редкоземельных	4	0	10	2
	элементов				
2.11	Химия актиноидов	4	0	10	2
2.12	Химия цинка и его	6	0	10	4
	соединений				
2.13	Химия кадмия и ртути и их	6	0	8	2
	соединений				
2.14	Химия меди и ее соединений	6	0	6	4
2.15	Химия серебра и золота	6	0	6	2
2.16	6 Химия инертных элементов 4		0	10	4
	Итого	156	0	276	106

4.2. Содержание дисциплины, структурированное по разделам (темам)

Курс лекционных занятий

№	Наименование	Содержание
	раздела / темы	
	дисциплины	
1	Химия элементов. Хим	ия непереходных элементов
1.1	Химия водорода и его	Общая характеристика (общая характеристика элемента
	соединений	или группы элементов включает: положение в
		Периодической системе, электронные конфигурации
		атомов, молекул или ионов, радиусы атомов и ионов,
		электроотрицательность, потенциал ионизации, сродство к
		электрону, степени окисления, закономерности изменения

	T	
		этих характеристик в группе элементов, характер
		химических связей в соединениях, основные сырьевые
		источники, способы получения, области применения, изотопы).
		/
		Проблема размещения водорода в Периодической системе. Изотопы водорода. Атомарный и молекулярный водород.
		Способы активации молекулярного водорода. Валентные
		состояния водорода. Ион Н+ и формы его существования в
		конденсированных средах. Протонные кислоты. Общая
		характеристика, классификация, сила кислот. Гидрид-ион.
		Классификация, свойства, применение гидридов.
		Гидридные комплексы. Нахождение в природе, способы
		получения, физические и химические свойства, области
		применения водорода и его соединений: пероксида
		водорода, воды.
1.2	Химия галогенов и их	Общая характеристика. Простые вещества: характер
	соединений	химической связи, химические свойства, изменение
	, ,	окислительной активности, методы получения в
		лаборатории и промышленности, применение. Влияние
		изменения межмолекулярного взаимодействия по ряду
		фтор – иод на агрегатное состояние галогенов.
		Галогеноводороды, их физические и химические свойства,
		способы получения. Изменение в ряду HF-HI прочности и
		типа связи водород – галоген, термической устойчивости и
		восстановительных свойств галогеноводородов.
		Галогеноводородные кислоты. Изменение силы галогеноводородных кислот в ряду HF–HI. Соляная
		кислота как одна из важнейших минеральных кислот, ее
		свойства, получение и применение. Плавиковая кислота,
		особенности ее строения, применение. Техника
		безопасности при работе с фтороводородом и его
		растворами. Галогениды. Общая характеристика,
		классификация, свойства. Стехиометрия, номенклатура,
		строение и реакционная способность кислородных
		соединений галогенов. Вторичная периодичность в
		изменении устойчивости кислородных соединений
		галогенов. Растворимость галогенов в воде и щелочах,
		условия смещения равновесия. Важнейшие кислородные
		соединения: оксиды, кислоты, соли, их свойства и применение. Кислородные соединения фтора.
1.3	Химия кислорода и его	Общая характеристика. Роль кислорода в протекании
1.5	соединений	биологических и минеральных процессов на Земле.
		Строение молекулы О2 с позиций методов ВС и МО.
		Парамагнетизм молекулярного кислорода. Строение ионов
		O2+, O2- и O22- (метод MO). Аллотропия. Сравнение
		свойств кислорода и озона. Важнейшие соединения
		кислорода. Классификация оксидов по типу химической
		СВЯЗИ
		и кислотно-основным свойствам. Оксиды ионные,
		ковалентные и с промежуточным типом связи. Оксиды
		кислотные, основные, амфотерные, несолеобразующие.

		Оксиды элементов-металлов с переменной степенью окисления. Вода: особенности строения, свойства, диаграмма фазовых равновесий. Гидраты и клатраты. Пероксид водорода: строение молекулы, свойства, способы получения. Пероксиды и супероксиды. Пероксокислоты и их соли: строение, получение, свойства.
1.4	Химия серы и ее соединений	циклические структуры. Сероводород и сульфаны, сульфиды, полисульфиды. Стехиометрия кислородных кислот серы и ее формальные степени окисления в них. Оксид серы (IV), сернистая кислота и ее соли, строение, свойства, получение. Сульфоксиловая и дитионистая кислоты. Дитионовая и политионовые кислоты и их соли. Оксид серы (VI), серная кислота, олеум, соли. Основные принципы производства серной кислоты и ее роль в химической промышленности. Пиросерная кислота и пиросульфаты. Тиосерная кислотаи тиосульфаты. Пероксосерные кислоты и персульфаты. Галогениды и оксогалогениды. Генетические взаимосвязи, причины многообразия и реакционная способность кислородных соединений серы. Селен и теллур. Свойства простых веществ. Бинарные водородные соединения селенаи теллура. Селениды и теллуриды, их роль в полупроводниковой технике. Сопоставление строения, термодинамических характеристик, термическойи окислительновосстановительной устойчивости Н2О, H2S, H2Se, H2Te, а также кислотно-основных свойств водных растворов этих соединений. Правила техники безопасности при работе с бинарными водородными соединениями серы, селена, теллура. Сопоставление свойств и строения важнейших кислородных соединений серы, селена и теллура. Проявление вторичной периодичности в свойствах кислородных соединений подгруппы серы.
1.5	Подгруппа азота. Химия азота и его соединений	ВС и МО. Уникальные физические и химические свойства молекулярного азота. Энергия тройной, двойной и одинарной связи азот — азот. Получение азота в лаборатории и промышленности. Применение молекулярного азота. Соединения азота с водородом (аммиак, гидразин, гидроксиламин, азид водорода): строение, свойства, получение, применение. Физико-химические условия промышленного синтеза аммиака. Сравнение кислотно-основных и окислительновосстановительных свойств аммиака, гидразина и гидроксиламина. Нитриды с ионной и ковалентной связью, металлоподобные нитриды. Стехиометрия и номенклатура оксидов и кислородных кислот азота. Диаграмма окислительных потенциалов соединений азота в кислой и щелочной средах. Оксиды азота (I), (II), (III), (IV), (V), азотноватистая кислота и гипонитриты, азотистая кислота и нитраты:

	1	v C
		строение, получение, свойства. Сопоставление
		устойчивости, кислотных и окислительно-
		восстановительных свойств водных растворов HNO2 и
		HNO3. Термическая устойчивость нитратов.
		Термодинамика и кинетика восстановления азотной
		кислоты. Ионы нитрозония и нитрония. Галогениды и
		оксогалогениды азота.
1.6	Химия фосфора и его	Фосфор. Особенности химии фосфора. Аллотропные
	соединений	модификации фосфора: условия стабильности, строение,
		физические и химические свойства. Фосфин, фосфиды,
		соли фосфония. Кислородные соединения фосфора.
		Сопоставление их строения и свойствс аналогичными
		соединениями азота. Оксиды фосфора (III) и (V).
		Фосфористая
		и гипофосфористая кислоты: строение, получение,
		свойства, таутомерные превращения, соли.
		Ортофосфорная и гипофосфорная кислоты: строение,
		свойства. Фосфаты: растворимость, гидролиз, термическая
		устойчивость, процессы конденсации. Строение
		конденсированных фосфатов, полифосфаты и
		полиметафосфаты. Эфиры фосфорной кислоты и их роль в
		биологических процессах. Сульфиды фосфора.
		Тиофосфорные кислоты. Галогениды и оксогалогениды
		фосфора.
1.7	Химия мышьяка,	Мышьяк, сурьма, висмут. Свойства элементов.
	сурьмы, висмута.	Аллотропия. Соединения с металлами. Водородные
		соединения. Сопоставление строения, характера
		химической связи, термодинамических характеристик,
		кислотно-основных и окислительно-восстановительных
		свойств водородных соединений элементов VA группы.
		Кислородные соединения элементов подгруппы мышьяка.
		Закономерности изменения окислительно-
		восстановительных свойств в VA группе. Сульфиды и
		тиосоли. Галогениды элементов подгруппы мышьяка.
1.8	Подгруппа углерода.	Общая характеристика. Особенности электронного
1.0	Химия углерода и его	строения атома углерода. Многообразие органических и
	соединений	неорганических соединений углерода.
	Соединении	Формы нахождения углерода в природе. Аллотропия:
		алмаз, графит, карбин. Искусственные алмазы.
		Фуллерены. Кристаллическая структура, физические и
		химические свойства алмаза и графита. Важнейшие
		карбиды, их классификация по типу химической связи.
		Применение карбидов в качестве тугоплавких,
		жаростойкихи высокотвердых материалов. Углеводороды.
		Изменение прочности связи углерод-углерод в ряду
		углеводородов с одинарной, двойной и тройной связью.
		углеводородов с одинарнои, двоинои и гроинои связью. Катенация, ее ослабление в ряду С – Si – Ge. Соединения
		углерода с кислородом. Оксид углерода: электронное
		строение молекулы, свойства. Карбонилы: состав и
		строение. Муравьиная кислота. Диоксид углерода,
		угольная кислота, карбонаты, пероксокарбонаты:

		получение, строение, свойства. Щавелевая кислота. Галогениды и оксогалогениды углерода. Соединения, содержащие связь углерод-азот: строение, получение, свойства. Карбамид и тиокарбамид, карбаминовая кислота. Цианистый водород, бинарные и комплексные цианиды. Дициан. Циановая кислота, цианаты. Гремучая кислота и ее соли. Изомерия и таутомерия. Соединения, содержащие связь углерод-сера: строение, получение, свойства.
1.9	Химия кремния и его соединения	Роль соединений кремния в построении земной коры. Особенности природы химических связей в соединениях кремния. Силаны: строение, получение, свойства, применение. Различия в термической устойчивости углеводородов и силанов. Силициды. Соединения кремния с галогенами. Кремнефтористоводородная кислота и ее соли. Карбид, сульфид, нитрид кремния. Оксиды кремния. Кристаллические модификации диоксида кремния. Кремниевые кислоты. Силикаты природные и искусственные. Современные представления о строении силикатов. Структуры островные, цепочечные, ленточные, слоистые и каркасные. Алюмосиликаты. Цеолиты. Силоксаны и силиконы. Общая характеристика химии германия, олова, свинца; сравнение с химией кремния. Элементы в свободном состоянии, аллотропия, химические свойства. Германий как важнейший материал с полупроводниковыми свойствами. Водородные соединения. Галогениды: строение, получение, свойства. Гидролиз галогенидов. Оксиды и кислоты. Германаты, станнаты и плюмбаты. Сульфиды и тиосоли. Металлоорганические производные. Солеобразные соединения Э(IV). Акваионы Sn(II) и Pb(II). Гидролиз и полимеризация аква-ионов. Окислительновосстановительные свойства соединений олова и свинца.
1.10	Подгруппа бора. Химия бора и его соединений	Общая характеристика. Особенности химии бора. Свойства элементарного бора. Соединения бора с металлами. Электронодефицитные молекулы. Бороводороды: строение, типы химических связей, химические свойства. Борогидрид-ион. Боразотные соединения (боразол, боразан, боразен, боразин): строение, получение, свойства. Карбид и нитрид бора. Галогениды бора: стехиометрия, строение, способы получения. Кислородные соединения бора. Борный ангидрид. Борные кислотыи бораты: строение, способы получения, свойства. Эфиры борной кислоты. Диагональное сходство свойств соединений бора и кремния. Применение соединений бора.
1.11	Химия бериллия и магния	кремния. Применение соединении обра. Общая характеристика. Особенности химии бериллия. Химические свойства металлического бериллия. Важнейшие соединения: оксид, гидроксид, бериллаты. Акваион бериллия, его гидролиз. Соли, комплексные соединения. Токсичность бериллия и его соединений.

		Магний, кальций, стронций, барий, радий
1.12	Химия	Химические свойства металлов. Свойства и способы
	щелочноземельных	получения бинарных соединений. Акваионы металлов и их
	металлов и их	соли. Изменение термической устойчивости карбонатов,
	соединений	сульфатов, нитратов в ряду кальций – барий. Причины и
		закономерности изменения растворимости солей
		щелочноземельных металлов. Комплексообразующая
		способность ионов ЩЗЭ. Токсичность соединений бария.
		Опасность радиоактивного заражения 90Sr.
1.13	Химия щелочных	Общая характеристика. Особенности химии лития.
	металлов и их	Получение щелочных элементов из природного сырья.
	соединений	Химические свойства металлов. Взаимодействие с жидким
		аммиаком. Реакции с кислородом: оксиды, пероксиды,
		супероксиды, озониды. Изменение состава и термической устойчивости кислородных соединений в группе
		щелочных элементов. Реакции с азотом и водородом.
		Реакции
		с кислотами и спиртами. Гидроксиды. Получение,
		строение, свойства, применение едкого натра и едкого
		кали. Акваионы щелочных металлов. Соли. Комплексные
		соединения. Диагональное сходство свойств соединений
		лития и магния.
2	Химия переходных мет	
2.1	Химия железа и его	Общая характеристика переходных элементов.
	соединений	Электронные конфигурации атомов и ионов. Положение в
		Периодической системе. Классификация. Общие свойства переходных элементов.
		Общая характеристика элементов триады железа.
		Получение, физические и химические свойства,
		применение металлов. Валентные состояния элементов
		триады железа. Изменение устойчивости соединений с
		низшими и высшими степенями окисления в ряду Fe–Ni.
		Основные классы соединений: оксиды, гидроксиды, соли,
		комплексные соединения. Сопоставление кислотно-
		основных и окислительно-восстановительных свойств
		соединений Fe (II), (III), (VI). Влияние
		комплексообразования на окислительно-
		восстановительные процессы в растворах, содержащих
•	***	Fe(II) и Fe(III).
2.2	Химия кобальта и их	Конфигурации атомов и ионов. Положение в
	соединений	Периодической системе. Классификация.
		Общая характеристика элементов кобальта и никеля.
		Получение, физические и химические свойства, применение металлов. Валентные состояния элементов.
		Изменение устойчивости соединений с низшими и
		высшими степенями окисления в ряду Fe–Ni. Основные
		классы соединений: оксиды, гидроксиды, соли,
		классы соединения. оксиды, гидроксиды, соли, комплексные соединения. Сравнение устойчивости
		комплексных соединений кобальта (II) и (III). Условия
		стабилизации Co(III). Карбонилы, нитрозосоединения.
		Ферроцен. Сравнительная характеристика химии железа,
L	1	1 1

		кобальта и никеля. Роль железа в биологических процессах. Применение соединений триады железа.
2.3	Химия платиновых элементов	Общая характеристика. Роль отечественных ученых в изучении химии платиновых элементов. Физические и химические свойства, применение платиновых металлов. Способы перевода их в раствор. Закономерности в изменении устойчивости характерных степеней окисления в соединениях платиновых элементов. Галогениды, оксиды, гидратированные оксиды, комплексы. Значение комплексных соединений в химии платиновых элементов. Инертность комплексов платины, эффект трансвлияния Черняева. Отличительные особенности химии отдельных платиновых металлов. Платина — важнейший представитель семейства платиновых элементов в химической технологии и медицине.
2.4	Химия марганца и его соединений	Общая характеристика. Валентные состояния элементов VIIB группы. Свойства и применение металлического марганца и его сплавов. Важнейшие соединения марганца (II), (III), (IV), (VI), (VII). Влияние рН раствора на окислительновосстановительные процессы, протекающие с участием соединений марганца. Необычные степени окисления марганца.
2.5	Химия технеция и рения	Краткие сведения о химии технеция. Важнейшие соединения рения. Сопоставление кислотно-основных и окислительно-восстановительных свойств соединений марганца и его аналогов в различных степенях окисления. Сравнение свойств соединений VIIA и VIIB групп. Применение соединений марганца, технеция, рения.
2.6	Химия хрома и его соединений	Общая характеристика. Валентные состояния элементов VIB группы. Получение хрома и феррохрома. Металлический хром. Кислородные соединения хрома. Соединения Сr(II): оксид, гидроксид, соли. Восстановительные свойства соединений двухвалентного хрома. Химия Сr(III): гидролиз акваиона, амфотерность гидроксида. Соединения Сr(VI): хроматы и бихроматы, кислотно-основные равновесия в водных растворах. Сопоставление кислотно-основных и окислительновосстановительных свойств соединений Сr (II), (III), (VI). Комплексные соединения и двойные соли хрома. Пероксидные производные. Хром в неустойчивых степенях окисления.
2.7	Химия молибдена и вольфрама	Получение Мои W. Металлическое состояние. Оксиды молибдена (VI) и вольфрама (VI). Молибденовая и вольфрамовая кислоты. Молибдаты и вольфраматы I-IV групп. Двойные, тройные молибдаты и вольфраматы. Изополи- и гетерополикислоты и соли: образование, строение, реакционная способность. Кислородные соединения молибдена и вольфрама в низших степенях окисления: оксиды, молибденовые и вольфрамовые ² сини ² ,

		вольфрамовые ² бронзы ² . Кластеры. Галогениды хрома, молибдена, вольфрама. Изменение состава высшего галогенида в ряду Cr — W. Применение соединений элементов VIB группы. Сравнение химических свойств элементов VIA и VIB групп Периодической системы.
2.8	Химия ванадия, ниобия, тантала Химия титана, циркония, гафния	Общая характеристика. Валентные состояния элементов подгруппы ванадия. Свойства и применение металлов. Химия соединений ванадия (II), (III), (IV), (V). Галогениды, оксиды, ванадаты, изополиванадаты, оксокатионы и акваионы. Комплексные соединения. Сопоставление окислительно-восстановительных и кислотно-основных свойств соединений ванадия (II), (III), (IV), (V). Оксиды ниобия и тантала. Ниобаты и танталаты. Изополианионы и их строение. Бинарные и комплексные фториды. Другие галогениды и оксогалогениды. Кластерная природа дигалогенидов ниобия и тантала. Комплексные соединения Nb и Та в низших степенях окисления. Общая характеристика. Получение, физические и химические свойства титана, циркония, гафния. Применение металлических титана, циркония, гафния и сплавов на их основе. Бинарные соединения: галогениды карбиды, нитриды, сульфиды и материалы на их основе. Кислородные соединения. Диоксиды и гидраты оксидов. Безводные соли четырехвалентных Ті, Zr, Hf, их гидратация и поведение в водных растворах. Соединения элементов подгруппы титана с низшими степенями окисления. Комплексные соединения. Причины сходства химических свойств соединений Zr и Hf. Химические основы разделения циркония и гафния.
2.10	Химия редкоземельных элементов	Общая характеристика. Строение электронных оболочек атомов, характерные валентные состояния, устойчивые степени окисления. Цериевая и иттриевая подгруппы. «Гадолиниевый излом». Лантаноидное сжатие. Получение, физические и химические свойства, применение металлов. Сложные соединения РЗЭ и методы разделения смесей РЗЭ. Характеристика соединений М(III): оксиды, гидроксиды, простые и двойные соли. Комплексные соединения. Характеристика соединений М(IV): Се(IV), Pr(IV), Tb(IV), их окислительные свойства. Характеристика соединений М(II): Eu(II), Sm(II), Yb(II), их восстановительные свойства. Применение соединений РЗЭ: материалы лазерной оптики, магнитные материалы, катализаторы, составная часть ВТСП материалов.
2.11	Химия актиноидов	Общая характеристика. Проблематичность химической аналогии актиноидови лантаноидов. Краткие сведения о химии тория. Важнейшие соединения

		и их свойства: оксид, гидроксид, галогениды, оксогалогениды, простые и комплексные соли. Химия урана. Соединения урана в различных степенях окисления. Галогениды, оксиды урана. Амфотерность кислородных соединений урана (VI). Синтез трансурановых элементов. Химия нептуния, плутония, америция. Важнейшие соединения: оксиды, гидроксиды, галогениды. Основные степени окисления. Закономерности изменения окислительно-восстановительных свойств в ряду U, Np, Pu, Am. Химия водных растворов: комплексообразование, диспропорционирование.
2.12	Химия цинка и его соединений	Общая характеристика. Особенности строения электронных оболочек атомов. Химические и физические свойства цинка. Получение и применение металлических цинка и их сплавов. Амальгамы. Важнейшие соединения М(II): оксиды, гидроксиды, соли. Химия водных растворов: гидролиз и комплексообразование. Сравнительная устойчивость комплексов. Соединения цинка с азотсодержащими молекулами. Изменение типа связи в соединениях двухвалентных цинка. Причины аномального (немонотонного) характера изменения кислотно-основных свойств оксидов и гидроксидов в ряду Zn(II) — Hg(II). Окислительно-восстановительные свойства соединений цинка. Применение соединений цинка.
2.13	Химия кадмия и ртуги и их соединений	Химические и физические свойства металлов. Получение и применение металлических цинка, кадмия, ртути и их сплавов. Амальгамы. Важнейшие соединения М(II): оксиды, гидроксиды, соли. Химия водных растворов: гидролиз и комплексообразование. Сравнительная устойчивость комплексов. Соединения ртути (II) с азотсодержащими молекулами. Изменение типа связи в соединениях двухвалентных цинка, кадмия, ртути. Причины аномального (немонотонного) характера изменения кислотно-основных свойств оксидов и гидроксидов в ряду Zn(II) — Hg(II). Окислительновосстановительные свойства соединений ртути. Диспропорционирование Hg22+. Важнейшие соединения ртути (I). Применение соединений цинка, кадмия, ртути. Токсичность соединений этих элементов. Способы устранения заражения помещений металлической ртутью.
2.14	Химия меди и ее соединений	Общая характеристика. Диаграммы Латимера. Причины нахождения в природе золота, серебра и меди в самородном состоянии. Физические и химические свойства металлов. Применение металлических Си, Аg, Аи и их сплавов. Химия меди в степенях окисления I и II. Важнейшие соединения: оксиды, гидроксиды, соли, комплексы. Диспропорционирование соединений меди (I). Применение соединений меди. Си (II, III) – составная часть материалов со свойствами ВТСП. Токсичность

		соединений меди.
2.15	Химия серебра и	Химия серебра (I). Основные соединения: оксид,
	золота	гидроксид, сульфид, простые и комплексные соли.
		Химические основы фотографического процесса.
		Необычные степени окисления серебра и их стабилизация.
		Химия золота. Растворение металлического золота в
		различных реагентах. Производные Au(III). Необычные
		степени окисления золота. Сравнение химических свойств
		элементов IA и IB групп Периодической системы.
2.16	Химия инертных	Общая характеристика. Особенности электронного
	элементов	строения атомов инертных газов. Неустойчивость
		двухатомных молекул инертных газов. Физические и
		химические свойства. История открытия соединений
		инертных газов. Клатраты. Фториды, комплексные
		соединения. Кислородные соединения. Окислительные
		свойства фторидных и кислородных соединений.
		Особенности химической связи в соединениях инертных
		газов. Применение инертных газов.

Курс лабораторных занятий

N₂	Наименование раздела /	Содержание
	темы дисциплины	
1	Химия элементов. Химия непереходных элементов	
1.1	Химия водорода и его соединений	Опыт 1. Получение водорода действием металла на кислоту. Опыт 2. Восстановление водородом оксида меди (II). Опыт 3. Получение водорода при взаимодействии алюминия и щелочи. Опыт 4. Получение водорода действием металла на воду. Опыт 5. Восстановление окислителей активным водородом.
1.2	Химия галогенов и их соединений	Опыт 1. Получение хлора. Опыт 2. Получение брома. Опыт 3. Получение соляной кислоты по способу Глаубера.
1.3	Химия кислорода и его соединений	Опыт 1. Получение кислорода термическим разложением хлората калия и перманганата калия Опыт 2. Окислительные свойства кислорода Опыт 3. Обнаружение пероксида водорода. Опыт 4. Каталитическое разложение пероксида водорода.
1.4	Химия серы и ее соединений	Опыт 5.Взаимодействие концентрированной серной кислоты с неметаллами. Опыт 1. Действие разбавленной серной кислоты на металлы.

		Опыт 2. Действие концентрированной серной
		опыт 2. деиствие концентрированной серной кислоты на металлы.
		Опыт 3.Дегидратирующие свойства серной
		кислоты.
		Опыт 4. Реакция на сульфат-ион.
1.5	Подгруппа азота. Химия азота	Опыт 1. Получение азота и его свойства.
1.5	и его соединений	Опыт 1. Получение азота и его своиства. Опыт 2. Получение аммиака.
	и его соединении	Опыт 3. Свойства аммиака.
		А. Растворение аммиака в воде.
		Б. Горение аммиака. Опыт 4. Реакция на ион аммония.
		Опыт 4. Геакция на ион аммония. Опыт 5. Свойства азотной кислоты.
		А. Разложение при нагревании.
		Б. Действие окислительной способности
		концентрированной и разбавленной азотной
		кислоты.
		В. Действие азотной кислоты на сложные
		вещества.
		Опыт 6. Разложение нитратов при нагревании.
		А. Разложение нитратов щелочных металлов при
		нагревании.
		Б. Разложение нитратов металлов средней
		активности при нагревании.
		В. Разложение нитратов малоактивных металлов
		при нагревании.
1.6	Химия фосфора и его	Выполнение упражнений и решение задач
1.0	соединений	Бынолнонно упражнонии и рошение зада г
1.7	Химия мышьяка, сурьмы,	Решение задач
	висмута.	
1.8	Подгруппа углерода. Химия	Опыт 1. Адсорбционная способность древесного
	углерода и его соединений	угля.
	J I	Опыт 2. Восстановительные свойства угля.
		Опыт 3. Получение и свойства оксида углерода (II).
		Опыт 4. Гидролиз солей угольной кислоты.
		Charles That contain yronanien knoweran
1.0	**	
1.9	Химия кремния и его	Опыт 1. Получение солей угольной кислоты.
	соединения	Опыт 2. Получение кремниевой кислоты.
4.10		Опыт3. Гидролиз солей кремниевой кислоты
1.10	Подгруппа бора. Химия бора	Опыт 1. Получение аморфного бора.
	и его соединений	Опыт 2.Взаимодействие алюминия с кислородом.
		Опыт 3. Взаимодействие алюминия с кислотами.
		Опыт 4. Получение гидроксида алюминия и
		исследование его свойств.
		Опыт 5. Гидролиз солей алюминия
1.11	Химия бериллия и магния	Решение задач
1.12	Химия щелочноземельных	Опыт 1. Свойства солей магния.
	металлов и их соединений	Опыт 2. Восстановительные свойства кальция.
		Опыт 3. Получение гидроксидов
		щелочноземельных металлов.
	<u> </u>	TOTAL INCOMPANIENT MAINTON.

		Опыт 4. Получение и свойства солей
		щелочноземельных металлов.
		Опыт 5. Жесткость воды и ее устранение
1.13	Химия щелочных металлов и их соединений	Опыт 1. Взаимодействие щелочных металлов с водой.
		Опыт 2. Гидролиз солей щелочных металлов.
		Опыт 3. Получение калийной селитры.
		Опыт 4. Окрашивание пламени солями щелочных
		металлов.
		Опыт 5. Комплексные соединения. Образование и
		диссоциация соединений с комплексным катионом.
2	Химия переходных металлов	
2.1	Химия железа и его	Опыт 1. Коррозия железа при контакте с цинком и
	соединений	оловом.
		Опыт 2. Взаимодействие железа с кислотами.
		Опыт 3. Пассивирование и оксидирование железа.
		Опыт 4. Получение гидроксида железа (II).
		Опыт 5. Реакция на ионы железа (II).
		Опыт 6. Получение и свойства гидроксида железа
		(III).
		Опыт 7. Реакция на ионы железа (III).
2.2	Химия кобальта и их	Опыт 1. Получение гидроксида никеля (II) и его
	соединений	свойства.
		Опыт 2. Получение гидроксида никеля (III) и его
		свойства.
		Опыт 3. Получение аммиаката никеля (II).
		Опыт 4. Получение гидроксида кобальта(II) и его
		свойства.
		Опыт 13. Получение оксида кобальта(II) и его
		свойства.
		Опыт 14. Получение гидроксида кобальта(III) и его
		свойства.
2.3	Химия платиновых элементов	Выполнение упражнений и решение задач
2.4	Химия марганца и его	Опыт 1. Получение и свойства гидроксида
	соединений	марганца (II).
		Опыт 2. Взаимодействие оксида марганца (IV) с
		серной кислотой.
		Опыт 3. Получение манганата калия.
		Опыт 4. Свойства соединений марганца (VI).
		Опыт 5. Свойства перманганата калия.
2.5	Химия технеция и рения	Выполнение упражнений и решение задач
2.6	Химия хрома и его	Опыт 1. Получение и свойства оксида хрома (III).
	соединений	Опыт 2. Получение и свойства гидроксида хрома
		(III).
		Опыт 3. Гидролиз солей хрома(III).
		Опыт 4. Получение хромового ангидрида и его
		свойства.
L		

2.7	Химия молибдена и вольфрама	Выполнение упражнений и решение задач
2.8	Химия ванадия, ниобия, тантала	Выполнение упражнений и решение задач
2.9	Химия титана, циркония, гафния	Выполнение упражнений и решение задач
2.10	Химия редкоземельных элементов	Выполнение упражнений и решение задач
2.11	Химия актиноидов	Выполнение упражнений и решение задач
2.12	Химия цинка и его	Опыт 1. Взаимодействие цинка с кислотами.
	соединений	Опыт 2. Взаимодействие цинка со щелочами.
		Опыт 3. Получение и свойства гидроксида цинка.
		Опыт 4. Получение сульфида цинка.
		Опыт 5. Получение комплексных соединений
		цинка.
		Опыт 6. Гидролиз солей цинка
2.13	Химия кадмия и ртути и их соединений	Выполнение упражнений и решение задач
2.14	Химия меди и ее соединений	Опыт 1.Получение меди.
		Опыт 2. Свойства меди.
		Опыт 3. Гидролиз солей меди.
		Опыт 4. Получение гидроксида и оксида меди (I).
		Опыт 5. Получение серебра.
		Опыт 6. Получение оксида серебра.
		Опыт 7. Получение и свойства гидроксида меди (II).
		Опыт 8. Получение комплексного соединения
		гидроксида меди.
		Опыт 9. Получение комплексного соединения
		гидроксида серебра.
		Опыт 10. Получение комплексной соли при
		взаимодействии раствора тиосульфата натрия с
		хлоридом и бромидом серебра.
2.15	Химия серебра и золота	Выполнение упражнений и решение задач
2.16	Химия инертных элементов	Выполнение упражнений и решение задач

5. Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине (модулю)

В ходе изучения дисциплины «Неорганическая химия» предусмотрена самостоятельная работа студентов в объеме 276 часов. Самостоятельная работа является составной частью курса, необходимой для всестороннего, полного усвоения дисциплины. Контроль за выполнением самостоятельной работы студентов осуществляется в ходе подготовки к коллоквиумам, контрольным работам, к лабораторным отчетам, к зачету и экзамену.

Самостоятельная работа проводится с целью углубления и систематизации знаний по дисциплине, полученных на лекциях, и предусматривает:

- чтение студентами рекомендованной литературы и усвоение теоретического материала дисциплины;
- подготовку к лабораторным занятиям;

- подготовку к написанию письменных контрольных работ;
- подготовку к сдаче устных коллоквиумов;
- работу с Интернет источниками;
- подготовку к экзаменам (промежуточный и рубежный контроль);
- выполнение теоретической части курсовой работы.
- 1.Файзуллина Н.Р. Лабораторный практикум по неорганической химии : для бакалавров, обучающихся по хим. спец. "020100.62-Химия" (профиль "Высокомолекулярные соединения") / Н. Р. Файзуллина ; ред. Т.Ф. Дехтярь и др. Стерлитамак : Изд-во СФ БашГУ, 2015. 147с. Прил.: С.135-145.-Библиогр.: с.147. 153р.38к.(16 экз).
- 2. Файзуллина Н.Р. Лабораторный практикум по общей химии : для бакалавров, обучающихся по хим. спец. / Н. Р. Файзуллина. Стерлитамак: Изд-во СФ БашГУ, 2014. 118с. Библиогр.: с.106-107.-Прил.: с.108-118. (44 экз).

6. Учебно-методическое и информационное обеспечение дисциплины (модуля)

6.1. Перечень учебной литературы, необходимой для освоения дисциплины (модуля) Основная учебная литература:

- 1. Неорганическая химия: в 3 т.: учеб. для студ. вузов. Т. 1: Физико-химические основы неорганической химии / под ред. Ю.Д. Третьякова. 2-е изд., испр. М.: Академия, 2008.-233с. (18 экз)
- 2. Неорганическая химия: в 3 т.: учеб. для студ. вузов. Т. 2: Химия непереходных элементов / под ред. Ю.Д. Третьякова. 2-е изд., перераб. М.: Академия, 2011.-365с. (13 экз.)
- 3. Неорганическая химия: в 3 т.: учеб. для студ. вузов. Т. 3: Химия переходных элементов / под ред. Ю.Д. Третьякова. 2-е изд., испр. М.: Академия, 2008.-348с. (9 экз.).

Дополнительная учебная литература:

- 1. Балецкая Л. Г. Неорганическая химия: учебн. пособие для вузов./ Л.Г. Балецкая. Ростов н/Д: Феникс, 2010. 317с. (13 экз.).
- 2. Гельфман М.И. Неорганическая химия: учеб. пособие для студ. / М.И. Гельфман, В.П. Юстратов. СПб.: Лань, 2007.- 527 с. (30экз.).
- 3. Файзуллина Н.Р. Лабораторный практикум по неорганической химии. Стерлитамак: Изд-во СФ БашГУ, 2013. 109с.(16 экз.).

6.2. Перечень электронных библиотечных систем, современных профессиональных баз данных и информационных справочных систем

№	Наименование документа с указанием реквизитов
п/п	
1	Договор на доступ к ЭБС ZNANIUM.COM между БашГУ в лице директора СФ
	БашГУ и ООО «Знаниум»№ 3/22-эбс от 05.07.2022
2	Договор на доступ к ЭБС «ЭБС ЮРАЙТ» (полная коллекция) между БашГУ в лице
	директора СФ БашГУ и ООО «Электронное издательство ЮРАЙТ» № 1/22-эбс от
	04.03.2022
3	Договор на доступ к ЭБС «Университетская библиотека онлайн» между БашГУ и
	«Нексмедиа» № 223-950 от 05.09.2022
4	Договор на доступ к ЭБС «Лань» между БашГУ и издательством «Лань» № 223-948
	от 05.09.2022

5	Договор на доступ к ЭБС «Лань» между БашГУ и издательством «Лань» № 223-949
	от 05.09.2022
6	Соглашение о сотрудничестве между БашГу и издательством «Лань» № 5 от
	05.09.2022
7	ЭБС «ЭБ БашГУ», бессрочный договор между БашГУ и ООО «Открытые
	библиотечные системы» № 095 от 01.09.2014 г.
8	Договор на БД диссертаций между БашГУ и РГБ № 223-796 от 27.07.2022
9	Договор о подключении к НЭБ и о предоставлении доступа к объектам НЭБ между
	БашГУ в лице директора СФ БашГУ с ФГБУ «РГБ» № 101/НЭБ/1438-П от
	11.06.2019
10	Договор на доступ к ЭБС «ЭБС ЮРАЙТ» (полная коллекция) между УУНиТ в лице
	директора СФ УУНиТ и ООО «Электронное издательство ЮРАЙТ» № 1/23-эбс от
	03.03.2023

Перечень ресурсов информационно-телекоммуникационной сети «Интернет» (далее - сеть «Интернет»)

№ п/п	Адрес (URL)	Описание страницы
1	www.en.edu.ru	Естественно-научный образовательный портал. Портал является составной частью федерального портала "Российское образование". Содержит ресурсы и ссылки на ресурсы по естественнонаучным дисциплинам (физика, химия и биология)
2	www.twirpx.com	Сайт студентов, аспирантов и преподавателей ВУЗов Доступ к ресурсам осуществляется через регистрацию. Скачивание ресурсов происходит за счет баллов. Баллы начисляются посредством sms.
3	www.chem.msu.su	chemNet Химическая информационная сеть. Химический факультет МГУ.

6.3. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства

Наименование программного обеспечения		
Office Standart 2007 Russian OpenLicensePack NoLevel Acdmc 200 / ООО «Общество		
информационных технологий». Государственный контракт №13 от 06.05.2009		
Office Standart 2010 RUS OLP NL Acdmc 200 /Лицензионный договор №04297 от 9.04.2012		
Windows 7 Heoграниченона 3 года/ Microsoft Imagine. Подписка №8001361124 от		
04.10.2017г.		

7. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

- ,	
Тип учебной аудитории	Оснащенность учебной
	аудитории
Учебная аудитория для проведения занятий	Учебная мебель, доска,
лекционного типа, учебная аудитория для проведения	мультимедиа-проектор, экран
занятий семинарского типа, учебная аудитория	настенный, учебно-наглядные

текущего контроля и промежуточной аттестации, учебная аудитория групповых и индивидуальных консультаций	пособия
Лаборатория общей и неорганической химии. Учебная аудитория для проведения занятий семинарского типа, учебная аудитория текущего контроля и промежуточной аттестации, учебная аудитория групповых и индивидуальных консультаций	Учебная мебель доска, учебно- наглядные пособия, вытяжные шкафы, химическая посуда, весы, химические реактивы
Читальный зал: помещение для самостоятельной работы	Учебная мебель, учебно- наглядные пособия, компьютеры с доступом к сети «Интернет» и ЭИОС Филиала