Документ подписан простой электронной подписью

Информация о владельце: ФИО: Сыров Игорь Анатольевич

СТЕРЛИТАМАКСКИЙ ФИЛИАЛ

Должность: Дирекфе ДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО Дата подписания: 28.06.2022 09:24:47

Учикальный программный ключ:

Учикальный программный ключ:

Учикальный программный ключ:

уникальный программный ключ: b683afe664d7e9f64175886cf9626a1% 1494dd КИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

 Факультет
 Естественнонаучный

 Кафедра
 Химии и химической технологии

Рабочая программа дисциплины (модуля)

дисциплина	Б1.0.25 Основы нанохимии и нанотехнологии		
	обязательная часть		
	Направление		
04.03.01	Химия		
код	наименование направления		
	Программа		
	Фундаментальная и прикладная химия		
Форма обучения			
	Очная		
	Для поступивших на обучение в		
2020 г.			

Разработчик (составитель)

старший преподаватель

Казакова Е. В.

ученая степень, должность, ФИО

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций	3
2. Цели и место дисциплины (модуля) в структуре образовательной программы	3
3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся	
4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий	4
4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)	4
4.2. Содержание дисциплины, структурированное по разделам (темам)	5
5. Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине (модулю)	.10
6. Учебно-методическое и информационное обеспечение дисциплины (модуля)	10
6.1. Перечень учебной литературы, необходимой для освоения дисциплины (модуля	_
6.2. Перечень электронных библиотечных систем, современных профессиональных баз данных и информационных справочных систем	
оаз данных и информационных оправочных систем	

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций

Формируемая компетенция	Код и наименование	Результаты обучения по
(с указанием кода)	индикатора	дисциплине (модулю)
	достижения	
	компетенции	
ОПК-4. Способен	ОПК-4.1. Использует	Обучающийся должен:
планировать работы	базовые знания в	Знать основные виды
химической направленности,	области математики	нанообъектов и наноматериалов,
обрабатывать и	и физики при	уметь прогнозировать их
интерпретировать	планировании работ	устойчивость и физико-
полученные результаты с	химической	химические свойства; иметь
использованием	направленности	представления о приборах и
теоретических знаний и		устройствах, разрабатываемых на
практических навыков		основе наноматериалов
решения математических и	ОПК-4.2. Планирует	Обучающийся должен:
физических задач	работы химической	Уметь анализировать и проводить
	направленности	оценку современных научных
		достижений в области нанохимии
		и нанотехнологий;
		ориентироваться в методах
		получения и исследования
		наноструктур: сканирующей
		туннельной микроскопии и
		спектроскопии.
	ОПК-4.3.	Обучающийся должен:
	Интерпретирует	Владеть методологией
	результаты	теоретических и
	химических	экспериментальных исследований
	наблюдений с	в области нанохимии;
	использованием	теоретическими знаниями о
	физических законов и	принципе размерного квантования
	представлений	и условиях наблюдения квантово-
		размерных явлений;
		фундаментальными знаниями о
		специфике поведения вещества в
		нанометровом размерном
		диапазоне; понимать механизм
		возникновения размерных
		физических и химических
		эффектов.

2. Цели и место дисциплины (модуля) в структуре образовательной программы

Цели изучения дисциплины:

- 1. формирование у студентов системы знаний об основах нанохимии, синтезе и анализе наноматериалов, применении нанотехнологий в органической химии, биологии и медицине;
- 2. применять полученные знания на практике, использовать основные законы нанохимии в профессиональной деятельности, понимать основные научно-технические проблемы

нанотехнологии и перспективы развития данной фундаментальной области знаний. Дисциплина «Основы нанохимии и нанотехнологии» относится к обязательной части.

Дисциплина изучается на 4 курсе в 7 семестре

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 2 зач. ед., 72 акад. ч.

06- 0	Всего часов	
Объем дисциплины	Очная форма обучения	
Общая трудоемкость дисциплины	72	
Учебных часов на контактную работу с преподавателем:		
лекций	24	
практических (семинарских)	26	
другие формы контактной работы (ФКР)	0,2	
Учебных часов на контроль (включая часы подготовки):		
зачет		
Учебных часов на самостоятельную работу обучающихся (СР)	21,8	

Формы контроля	Семестры
зачет	7

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№	№ Наименование раздела / темы п/п дисциплины		учебных зана мостоятельн мощихся и тр часах	ую работ удоемко	гу
11/11			Контактная работа с преподавателем		
		Лек	Пр/Сем	Лаб	CP
1	Основы нанохимии и нанотехнологии	24	26	0	21,8
1.7	Тема 7. Принципы функционирования	2	2	0	2
	полупроводниковой электроники. ДНК-				
	компьютер.				
1.1	Тема 1. Введение в нанохимию и	2	2	0	2
	нанотехнологию. Основные понятия				
	нанохимии и нанотехнологии. История				
	развития нанотехнологий. Инструментарий				
	нанотехнолога.				
1.2	Тема 2. Общая характеристика объектов	2	2	0	2
	нанотехнологий и способов их получения.				
1.3	Тема 3. Общая характеристика физических	4	4	0	4
	и химических свойств наночастиц.				

1.9	Тема 9. ДНК-чипы и биочипы. Генная	2	2	0	2,8
	терапия и электропорация. Нанотехнологии				
	и биомиметика: подражая природе.				
1.8	Тема 8. Нанообъекты как основа новых	2	2	0	3
	лекарств и систем их направленной				
	доставки. Нанодиагностика.				
1.6	Тема 6. Объекты нанохимии.	2	4	0	2
	Классификации наночастиц. "Умные"				
	наноматериалы.				
1.5	Тема 5. Корпускулярно-волновая природа	4	4	0	2
	электромагнитного излучения и строение				
	атома. Квантовые размерные эффекты.				
	Квантовые точки, проволоки и плоскости.				
1.4	Тема 4. Супрамолекулярная химия и	4	4	0	2
	самосборка основные термины и понятия.				
	Будущее нанотехнологий: проблемы и				
	перспективы.				
	Итого	24	26	0	21,8

4.2. Содержание дисциплины, структурированное по разделам (темам)

Курс практических/семинарских занятий

No	Наименование раздела / темы	Содержание
	дисциплины	-
1	Основы нанохимии и нанотехноло	ГИИ
1.7	Тема 7. Принципы	1. Принципы функционирования
	функционирования	полупроводниковой электроники.
	полупроводниковой электроники.	2. Периодические структуры плоских доменов.
	ДНК-компьютер.	3. Структуры с периодической модуляцией
		состава в эпитаксиальных пленках твердых
		растворов полупроводников.
		4. Полупроводниковые лазеры на основе
		гетероструктур с квантовыми точками
		5. Способность молекул ДНК кодировать
		информацию о строении белков с
		использованием ограниченного числа «букв».
		6. Примеры ДНК-вычислений.
1.1	Тема 1. Введение в нанохимию и	1. Цели и задачи нанотехнологии.
	нанотехнологию. Основные	2. Физические и технологические проблемы и
	понятия нанохимии и	ограничения микроминиатюризации
	нанотехнологии. История развития	полупроводниковых устройств.
	нанотехнологий. Инструментарий	3. Применение методов нанотехнологии для
	нанотехнолога.	уменьшения размеров приборов.
		4. Перспективные наноматериалы и
		направления нанотехнологии.
		5. Визуализация и контроль результатов
		нанотехнологий - обязательное условие для их
		реализации и развития.
		6. Основные понятия нанохимии и
		нанотехнологии.
		7. Электростатические эффекты.
		8. Локальный тепловой нагрев.

1.2	Тема 2. Общая характеристика объектов нанотехнологий и способов их получения.	 Пластическая деформация. Полевое испарение положительных и отрицательных ионов. Пондеромоторный эффект. Эффект электронного ветра. История развития нанотехнологий. Наноструктурные элементы вещества. Наноструктурные элементы вещества: атомы, молекулы, фуллерены, нанотрубки, кластеры. Квантовые точки (КТ) - искусственные молекулы. Наноструктурные полимеры Инструментарий нанотехнолога. Материалы на основе наноструктурных элементов. Нанокристаллы, нанотрубки, наностержни и их производные. Структурные элементы для наноматериалов более высокого порядка. Углеродные нанотрубки, технология изготовления, структура и свойства. Основные типы наносистем. Общая характеристика методов получения наносистем. Физические методы.
1.3	Тема 3. Общая характеристика физических и химических свойств наночастиц.	 Химические методы. Механохимические методы. Принцип метода диспергирования потоком жидкости или газа. Получение наночастиц методом молекулярных пучков. Принципиальная схема метода газофазного синтеза металлических наночастиц. Плазмохимический способ получения наноразмерных частиц? Криохимический синтез. Броуновское движение и диффузия. Электронное строение и электропроводность наночастиц. Пространственная структура наночастиц. Магнитные свойства наночастиц. Оптические свойства наночастиц. Механические свойства наноматериалов.
1.9	Тема 9. ДНК-чипы и биочипы. Генная терапия и электропорация. Нанотехнологии и биомиметика: подражая природе.	 Механические свойства наноматериалов. Термические свойства наночастиц. Каталитические свойства наносистем. Микрофлюидные системы. Полимеразная цепная реакция. Проведение полимеразной цепной реакции для получения фрагментов ДНК заданной последовательности олигонуклеотидов. Биочипы.

		5. Формирование центров связывания.
		6. Регистрация сигнала ДНК-чипов.
		7. Генная терапия и электропорация.
		8. Рекомбинантные ДНК.
		9. Генная инженерия.
		10. Мутации.
		11. Рестрикция.
		12. Трансдукция.
		13. Обмен генетическим материалом.
		14. Конструкции из белков.
		15. «Поделки» из молекул ДНК.
		16. РНК-наномашины.
1.8	Тема 8. Нанообъекты как основа	1. Нанообъекты как основа новых лекарств и
1.0	новых лекарств и систем их	систем их направленной доставки.
	направленной доставки.	2. Ионный синтез наноструктур на поверхности
	Нанодиагностика.	и в объеме полупроводников.
	Пиподни постики.	3. Формирование нанокристаллов кремния и
		германия в диоксиде кремния и полимерных
		материалах при ионной бомбардировке.
		4. Процессы самоорганизации наноструктур
		при ионном синтезе.
		5. Анизотропное распыление поверхности
		полупроводниковых материалов при
		воздействии ионных пучков.
		6. Повышение чувствительности традиционных
		средств диагностики.
		7. Наночастицы в составе иммуносенсоров.
		8. Лаборатория на чипе.
1.6	Тема 6. Объекты нанохимии.	1. Объекты нанохимии.
	Классификации наночастиц.	2. Классификации наночастиц.
	"Умные" наноматериалы.	3. Нанопечатная литография.
	1	4. Изготовление штампов.
		5. Выбор резистов, полиметилметакрилат.
		6. Реактивное ионное травление.
		7. Умные наноматериалы.
		8. Рост наноструктур на фасетированных
		плоскостях.
		9. Трехмерные массивы когерентно-
		напряженных островков.
		10. Массивы вертикально-связанных КТ.
1.5	Тема 5. Корпускулярно-волновая	1. Корпускулярно-волновая природа
	природа электромагнитного	электромагнитного излучения и строение
	излучения и строение атома.	атома.
	Квантовые размерные эффекты.	2. Субмикронные технологии.
	Квантовые точки, проволоки и	3. Уменьшение размеров элементов методами
	плоскости.	традиционной планарной технологии за счет
		разработки, создания и применения
		экстремальных ультрафиолетовых источников
		излучения со сверхкороткой длиной волны
		(13.5 нм) при процессах литографии.
		4. Квантовые размерные эффекты.
		5. Источники экстремального ультрафиолета.
	<u> </u>	

1.4	Тема 4. Супрамолекулярная химия и самосборка основные термины и понятия. Будущее нанотехнологий: проблемы и перспективы.	 Лазерное излучение: взаимодействие с поверхностью и применение в НТ. Нанолитография. Электронная, ионная и рентгеновская литографии. Изготовление наноточек и нанопроволок литографическими методами. Квантовые точки, проволоки и плоскости. Самоорганизация квантовых точек и нитей. Самоорганизованный рост по механизму Странски-Крастанова. Теория самоорганизованного роста квантовых точек. Системы полупроводниковых материалов для выращивания структур с КТ. Супрамолекулярная химия и самосборка - основные термины и понятия. Материалы электроники для нанотехнологий. Кремний и его модификации, в том числе, кремний на изоляторе, пористый кремний, нанокристаллы кремния в диоксиде кремния. Будущее нанотехнологий: проблемы и перспективы. Гетероструктуры (ГС) и наиболее распространенные системы полупроводниковых материалов на основе твердых растворов АЗВ5. Тройные и четверные соединения на основе твердых растворов АЗВ5.
		6. Тройные и четверные соединения на основе A3B5.
		7. Материалы на основе нитридов и их применение.

Курс лекционных занятий

№	Наименование раздела / темы	Содержание
	дисциплины	
1	Основы нанохимии и нанотехнол	10ГИИ
1.7	Тема 7. Принципы	Периодические структуры плоских доменов.
	функционирования	Структуры с периодической модуляцией состава
	полупроводниковой электроники.	в эпитаксиальных пленках твердых растворов
	ДНК-компьютер.	полупроводников.
1.1	Тема 1. Введение в нанохимию и	Введение в нанотехнологию. Цели и задачи
	нанотехнологию. Основные	нанотехнологии. Физические и технологические
	понятия нанохимии и	проблемы и ограничения микроминиатюризации
	нанотехнологии. История	полупроводниковых устройств. Применение
	развития нанотехнологий.	методов нанотехнологии для уменьшения
	Инструментарий нанотехнолога.	размеров приборов. Визуализация и контроль
		результатов нанотехнологий - обязательное
		условие для их реализации и развития.
		Электростатические эффекты, локальный
		тепловой нагрев, пластическая деформация,
		полевое испарение положительных и

		отрицательных ионов, пондеромоторный эффект, эффект электронного ветра. Наностуктурные элементы вещества. Материалы на основе наноструктурных элементов.
1.2	Тема 2. Общая характеристика объектов нанотехнологий и способов их получения.	Основные типы наносистем. Общая характеристика методов получения наносистем. Физические, химические и механохимические методы.
1.3	Тема 3. Общая характеристика физических и химических свойств наночастиц.	Броуновское движение и диффузия. Электронное строение и электропроводность наночастиц. Пространственная структура наночастиц. Магнитные свойства наночастиц. Оптические свойства наночастиц. Механические свойства наноматериалов. Термические свойства наночастиц. Каталитические свойства наночастиц. Каталитические свойства наносистем.
1.9	Тема 9. ДНК-чипы и биочипы. Генная терапия и электропорация. Нанотехнологии и биомиметика: подражая природе.	Литографически-индуцированная самосборка наноструктур. Понятие о литографически-индуцированной самосборке наноструктур. Кремниевые подложки, гомополимер, требования к маске. Рекомбинантные ДНК. Генная инженерия. Мутации. Рестрикция. Трансдукция. Обмен генетическим материалом. Конструируя из белков. Поделки из молекул ДНК. РНК-наномашины. Вирусы.
1.8	Тема 8. Нанообъекты как основа новых лекарств и систем их	Ионный синтез наноструктур на поверхности и в объёме полупроводников. Процессы
	направленной доставки.	самоорганизации наноструктур при ионном
	Нанодиагностика.	синтезе. Анизотропное распыление поверхности полупроводниковых материалов при воздействии ионных пучков.
1.6	Тема 6. Объекты нанохимии.	Нанопечатная литография. Изготовление
	Классификации наночастиц.	штампов. Выбор резистов,
	"Умные" наноматериалы.	полиметилметакрилат. Реактивное ионное травление. Рост наноструктур на
		фасетированных плоскостях. Трехмерные массивы
		когерентно-напряженных островков. Массивы
		вертикально-связанных КТ.
1.5	Тема 5. Корпускулярно-волновая	Субмикронные технологии. Источники
	природа электромагнитного	экстремального ультрафиолета. Лазерное
	излучения и строение атома.	излучение: взаимодействие с поверхностью и
	Квантовые размерные эффекты. Квантовые точки, проволоки и	применение в НТ. Нанолитография. Самоорганизация квантовых точек и нитей.
	плоскости.	Квантовые точки. Самоорганизованный рост по
		механизму Странски-Крастанова. Теория
		самоорганизованного роста квантовых точек.
1.4	Тема 4. Супрамолекулярная	Материалы электроники для нанотехнологий.
	химия и самосборка основные	Гетероструктуры (ГС) и наиболее
	термины и понятия. Будущее	распространенные системы полупроводниковых
	нанотехнологий: проблемы и перспективы.	материалов. Материалы на основе нитридов и их применение.
	перепективы.	применение.

5. Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине (модулю)

Перечень тем выносимых на самостоятельное изучение

- 1. Основные проблемы нанохимии.
- 2. Методы исследования наноразмерных систем.
- 3. Исследование и моделирование наноматериалов.
- 4. Перспективные методы наносборки. Технологии 3D-печати.
- 5. Теория фракталов. Фрактальные свойства наноматериалов.

Список учебно-методических материалов

- 1. Марголин В.И. Введение в нанотехнологию. [Электронный ресурс] / В.И. Марголин, В.А. Жабрев, Г.Н. Лукьянов, В.А. Тупик. Электрон. дан. СПб.: Лань, 2012. 464 с. Режим доступа: http://e.lanbook.com/book/4310 Загл. с экрана. (01.06.2021).
- 2. Нанотехнологии и специальные материалы: учебное пособие / под ред. Ю.П. Солнцева. Санкт-Петербург: Химиздат, 2009. 336 с. ISBN 978-5-93808-177-2; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=98343 (01.06.2021).
- 3. Андриевский Р.А. Основы наноструктурного материаловедения. Возможности и проблемы [Электронный ресурс]: монография Электрон. дан. Москва: Издательство "Лаборатория знаний", 2017. 255 с. Режим доступа: https://e.lanbook.com/book/94128. Загл. с экрана. (01.06.2021).
- 4. Неволин В.К. Зондовые нанотехнологии в электронике: монография / В.К. Неволин. Изд. 2-е, испр. Москва: Техносфера, 2014. 174 с.: ил., схем., табл. (Мир электроники). Библиогр. в кн. ISBN 978-5-94836-382-0; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=260697 (01.06.2021)

6. Учебно-методическое и информационное обеспечение дисциплины (модуля)

6.1. Перечень учебной литературы, необходимой для освоения дисциплины (модуля) Основная учебная литература:

- 1. Нанотехнологии и специальные материалы: учебное пособие / под ред. Ю.П. Солнцева. Санкт-Петербург: Химиздат, 2009. 336 с. ISBN 978-5-93808-177-2; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=98343 (01.06.2021).
- 2. Марголин В.И. Введение в нанотехнологию. [Электронный ресурс] / В.И. Марголин, В.А. Жабрев, Г.Н. Лукьянов, В.А. Тупик. Электрон. дан. СПб.: Лань, 2012. 464 с. Режим доступа: http://e.lanbook.com/book/4310 Загл. с экрана. (01.06.2021).

Дополнительная учебная литература:

- 1. Андриевский Р.А. Основы наноструктурного материаловедения. Возможности и проблемы [Электронный ресурс]: монография Электрон. дан. Москва: Издательство "Лаборатория знаний", 2017. 255 с. Режим доступа: https://e.lanbook.com/book/94128. Загл. с экрана. (01.06.2021).
- 2. Неволин В.К. Зондовые нанотехнологии в электронике: монография / В.К. Неволин. Изд. 2-е, испр. Москва: Техносфера, 2014. 174 с.: ил., схем., табл. (Мир электроники). Библиогр. в кн. ISBN 978-5-94836-382-0; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=260697 (01.06.2021)

6.2. Перечень электронных библиотечных систем, современных профессиональных баз данных и информационных справочных систем

№ п/п Наименование документа с указанием реквизитов