Документ подписан простой электронной подписью

Информация о владельце: ФИО: Сыров Игорь Анатольевич

СТЕРЛИТАМАКСКИЙ ФИЛИАЛ

Должность: Дирекфе дерального госу дарственного БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО Дата подписания: 28.06.2022 12:18:55

УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

Уникальный программный ключ:

режения программным ключ: b683afe664d7e9f64175886cf9626a1% (14)ad36 ИРС КИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет	Естественнонаучный
Кафедра	Общей и теоретической физики
	Рабочая программа дисциплины (модуля)
пионип пино	Б1.О.29 Физика
дисциплина	В1.0.29 Физики
	обязательная часть
	Направление
20.02.01	m
20.03.01	Техносферная безопасность
код	наименование направления
	Программа
	1 1
Бе	вопасность технологических процессов и производств
	Форма обучения
	20077707
	Заочная
	Для поступивших на обучение в
	для поступивших на обучение в 2021 г.
	EVELL.

Разработчик (составитель)

к.ф.-м.н., доцент

Ягафарова З. А.

ученая степень, должность, ФИО

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций	3
2. Цели и место дисциплины (модуля) в структуре образовательной программы	3
3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся	4
4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий	4
4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)	4
4.2. Содержание дисциплины, структурированное по разделам (темам)	5
5. Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине (модулю)	Э
6. Учебно-методическое и информационное обеспечение дисциплины (модуля)10)
6.1. Перечень учебной литературы, необходимой для освоения дисциплины (модуля)	
6.2. Перечень электронных библиотечных систем, современных профессиональных баз данных и информационных справочных систем	1

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций

Формируемая	Код и наименование	Результаты обучения по
компетенция (с указанием	индикатора достижения	дисциплине (модулю)
кода)	компетенции	, ,
ОПК-1. Способен учитывать современные тенденции развития	ОПК-1.1. Учитывает современные тенденции развития техники и	Обучающийся должен: знать основные физические теории для решения
техники и технологий в области техносферной безопасности, измерительной и	технологий в области техносферной безопасности, измерительной и вычислительной техники,	возникающих физических задач, для самостоятельного приобретения физических знаний, для понимания
вычислительной техники, информационных технологий при решении типовых задач в области профессиональной деятельности, связанной с	информационных технологий при решении типовых задач в области профессиональной деятельности, связанной с защитой окружающей среды и обеспечением безопасности	принципов работы приборов и устройств
защитой окружающей среды и обеспечением безопасности человека;	человека ОПК-1.2. Осуществляет проектирование технических объектов с использованием методов и средств инженерной и компьютерной графики	Обучающийся должен: уметь анализировать информацию по физике из различных источников; приобретать новые знания по физике, используя современные информационные и коммуникационные технологии; применять общие законы физики для решения профессиональных задач
	ОПК-1.3. Применяет на практике методы теоретического и экспериментального исследования в естественнонаучных дисциплинах	Обучающийся должен: владеть навыками использования знаний о современной физической картине мира, навыками использования знаний о пространственновременных закономерностях, знаний о строении вещества для понимания окружающего мира и явлений природы

2. Цели и место дисциплины (модуля) в структуре образовательной программы

Цели изучения дисциплины:

дать студентам знания по основам физики для решения задач предстоящей профессиональной деятельности.

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 252 акад. ч.

Объем дисциплины	Всего часов Заочная форма обучения
Общая трудоемкость дисциплины	252
Учебных часов на контактную работу с преподавателем:	
лекций	8
практических (семинарских)	10
лабораторных	6
другие формы контактной работы (ФКР)	1,4
Учебных часов на контроль (включая часы подготовки):	11,6
зачет	
экзамен	
Учебных часов на самостоятельную работу обучающихся (CP)	215

Формы контроля	Семестры
зачет	3
экзамен	4

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

3.0			ды учебных занят оятельную работу		
№ п/п	Наименование раздела / темы	трудоемкость (в часах)			
11/11	дисциплины	Контактн	ая работа с препод	цавателем	CP
		Лек	Пр/Сем	Лаб	Cr
2.3	Реальные газы, жидкости и	0	0	0	3
	твёрдые тела				
2.2	Основы термодинамики	1	0	0	4
2.1	Основы молекулярно-	1	0	0	3
	кинетической теории				
1.6	Механические колебания и	0	0	0	3
	волны				
1.5	Механика жидкостей и газов	0	0	0	3
1.4	Динамика вращательного	0	0	0	3
	движения твёрдого тела				
1.3	3 Импульс тела. Работа и энергия 0 0 0		3		
1.2	Динамика системы	1 1 1 3		3	

	материальных точек				
1.1	Кинематика материальной	1	1	1	3
	точки				
2	Молекулярная физика и	2	0	0	10
	основы термодинамики				
4	Оптика и атомная физика	0	2	0	97
4.1	Геометрическая оптика	0	2	0	24
4.2	Волновая оптика	0	0	0	24
4.3	Квантовые свойства света	0	0	0	24
4.4	Физика атома. Физика	0	0	0	25
	атомного ядра и элементарных				
	частиц				
3.1	Электростатика	1	2	2	16
3.2	Электрическое поле в	1	2	0	16
	проводниках и в диэлектриках				
3.3	Постоянный ток. Закон Ома	1	2	2	18
3.4	Магнитное поле	1	0	0	20
3.5	Электромагнитная индукция.	0	0	0	20
	Переменный ток				
1	Механика	2	2	2	18
3	Электричество и магнетизм	4	6	4	90
	Итого	8	10	6	215

4.2. Содержание дисциплины, структурированное по разделам (темам)

Курс лекционных занятий

No	Наименование	Содержание
	раздела / темы	
	дисциплины	
2.2	Основы	Термодинамическая система. Термодинамическое равновесие.
	термодинамики	Параметры состояния. Внутренняя энергия. Взаимодействие
		термодинамических систем. Работа и теплота как формы
		обмена энергией между системами. Квазистатические
		процессы. Первое начало термодинамики. Применение
		первого начала термодинамики к изопроцессам.
		Теплоёмкость. Адиабатический процесс. Политропический
		процесс. Второе начало термодинамики. Обратимые и
		необратимые процессы. Тепловые машины. Цикл Карно.
		Теоремы Карно. Реальные циклы. Неосуществимость вечных
		двигателей. Энтропия. Приведённая теплота. Закон
		возрастания энтропии. Статистическое истолкование второго
		начала термодинамики. Теорема Нернста. Недостижимость
		абсолютного нуля
2.1	Основы	Молекулярно-кинетическая теория вещества. Идеальный газ.
	молекулярно-	Опытные законы идеального газа. Уравнение состояния газа.
	кинетической	Уравнение Клапейрона-Менделеева. Закон Дальтона. Закон
	теории	Авогадро. Абсолютная шкала температур. Распределение
		скоростей молекул по Максвеллу. Барометрическая формула.
		Распределение Больцмана. Явление переноса в
		термодинамических неравновесных системах,
		теплопроводность газов, диффузия, вязкость
1.2	Динамика системы	Инерциальные системы отсчета. Масса. Первый закон

1.1	материальных точек Кинематика материальной точки	Ньютона. Сила. Второй закон Ньютона. Уравнение движения материальной точки. Третий закон Ньютона. Сложение сил. Принцип относительности, преобразования Галилея и Лоренца. Следствия из них. Силы в природе. Сила трения. Коэффициент трения. Сила упругости. Закон Гука. Закон всемирного тяготения. Сила тяжести. Вес. Напряженность поля гравитации. Понятие о невесомости. Космические скорости. Неинерциальные системы отсчета. Силы инерции Механическое движение. Материальная точка. Система отсчета. Радиус-вектор. Векторы перемещения, скорости и ускорения. Описание движения точки: прямолинейные равномерное и равноускоренное. Графики пути и скорости. Движение тела по окружности. Нормальное, тангенциальное и полное ускорения при криволинейном движении. Кинематика
		вращательного движения. Угловая скорость и угловое
		ускорение. Связь линейных и угловых величин
2		ка и основы термодинамики
3.1	Электростатика	Два вида электрических зарядов. Дискретность заряда. Закон сохранения электрического заряда. Электростатическое поле. Закон Кулона. Напряженность электрического поля. Поле точечного заряда. Принцип суперпозиции полей. Поток напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме. Работа перемещения заряда в электростатическом поле; потенциал, разность потенциалов. Связь между напряженностью и потенциалом. Потенциальность электростатического поля Диполь. Дипольный момент, поляризованность. Типы диэлектриков. Поляризация, диэлектрическая проницаемость. Электрическое смещение. Сегнетоэлектрики. Проводники в электрическом поле. Электроёмкость. Конденсаторы. Способы соединения конденсаторов. Энергия заряженного проводника, конденсатора. Энергия электростатического поля. Плотность
		энергии
3.2	Электрическое поле в проводниках и в диэлектриках	Природа носителей тока в металлах. Основные положения классической теории электропроводимости металлов. Работа выхода электронов из металла. Ток в вакууме. Эмиссионные явления. Виды электронной эмиссии и их применение. Ток в газах. Ионизация газов. Несамостоятельный и самостоятельный разряды. Использование газового разряда в технике. Понятие плазмы и её использование в технике. Лазерные источники излучения. Ток в растворах и расплавах электролитов. Закон Ома для электролитов. Закон электролиза Фарадея. Использование электролиза в технике. Ток в полупроводниках. Элементы зонной теории проводимости. Виды носителей тока в полупроводниках и типы проводимости. Собственная и примесная проводимости. Виды полупроводниковых приборов (диод, транзистор, фото- и
3.3	Постоянный ток.	терморезисторы, светодиод, лазер) и принципы их использования в электронных устройствах Постоянный электрический ток. Сила тока. Плотность тока

		Э
		Электропроводимость, сопротивление. Последовательное и
		параллельное соединение проводников. Температурная
		зависимость сопротивлений. Условия существования тока.
		Источники тока. Электродвижущая сила источника. Закон
		Ома для неоднородного участка и полной цепи. Правила
		Кирхгофа. Работа и мощность тока. КПД источников. Закон
		Джоуля-Ленца. Закон Ома и Джоуля-Ленца в
		дифференциальной форме
3.4	Магнитное поле	Магнитное поле и его характеристики: индукция,
		напряженность магнитного поля. Закон Био-Савара-Лапласа и
		его применение к расчетам магнитных полей прямого и
		кругового токов. Закон полного тока. Сила Ампера.
		Взаимодействие параллельных токов. Сила Лоренца.
		Магнитный поток. Теорема Гаусса для магнитных полей.
		Виток с током в магнитном поле. Магнитные поля соленоида,
		тороида. Магнитное поле в веществе. Намагниченность.
		Диамагнетизм, парамагнетизм, ферромагнетизм
1	Механика	
3	Электричество и ма	агнетизм

Курс практических/семинарских занятий

No	Наименование	Содержание
	раздела / темы	
	дисциплины	
1.2	Динамика системы	Инерциальные системы отсчета. Масса. Первый закон
	материальных точек	Ньютона. Сила. Второй закон Ньютона. Уравнение движения
		материальной точки. Третий закон Ньютона. Сложение сил.
		Принцип относительности, преобразования Галилея и
		Лоренца. Следствия из них. Силы в природе. Сила трения.
		Коэффициент трения. Сила упругости. Закон Гука. Закон
		всемирного тяготения. Сила тяжести. Вес. Напряженность
		поля гравитации. Понятие о невесомости. Космические
		скорости. Неинерциальные системы отсчета. Силы инерции
1.1	Кинематика	Механическое движение. Материальная точка. Система
	материальной точки	отсчета. Радиус-вектор. Векторы перемещения, скорости и
		ускорения. Описание движения точки: прямолинейные
		равномерное и равноускоренное. Графики пути и скорости.
		Движение тела по окружности. Нормальное, тангенциальное и
		полное ускорения при криволинейном движении. Кинематика
		вращательного движения. Угловая скорость и угловое
		ускорение. Связь линейных и угловых величин
4	Оптика и атомная ф	
4.1	Геометрическая	Основные законы оптики: законы прямолинейного
	оптика	распространения, отражения, преломления. Центрированная
		оптическая система, собирающая и рассеивающая линзы.
		Формула тонкой линзы. Зеркала: плоские и сферические.
		Получение изображений с помощью линз и зеркал.
		Оптические приборы: лупа, микроскоп, телескоп. Основные
		фотометрические величины и их единицы. Полное внутреннее
		отражение. Абсолютный и относительный показатели
		преломления сред
3.1	Электростатика	Два вида электрических зарядов. Дискретность заряда. Закон
		7

22		сохранения электрического заряда. Электростатическое поле. Закон Кулона. Напряженность электрического поля. Поле точечного заряда. Принцип суперпозиции полей. Поток напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме. Работа перемещения заряда в электростатическом поле; потенциал, разность потенциалов. Связь между напряженностью и потенциалом. Потенциальность электростатического поля Диполь. Дипольный момент, поляризованность. Типы диэлектриков. Поляризация, диэлектрическая проницаемость. Электрическое смещение. Сегнетоэлектрики. Проводники в электрическом поле. Электроёмкость. Конденсаторы. Способы соединения конденсаторов. Энергия заряженного проводника, конденсатора. Энергия электростатического поля. Плотность энергии
3.2	Электрическое поле в проводниках и в диэлектриках	Природа носителей тока в металлах. Основные положения классической теории электропроводимости металлов. Работа выхода электронов из металла. Ток в вакууме. Эмиссионные явления. Виды электронной эмиссии и их применение. Ток в газах. Ионизация газов. Несамостоятельный и самостоятельный разряды. Использование газового разряда в технике. Понятие плазмы и её использование в технике. Лазерные источники излучения. Ток в растворах и расплавах электролитов. Закон Ома для электролитов. Закон электролиза Фарадея. Использование электролиза в технике. Ток в полупроводниках. Элементы зонной теории проводимости. Виды носителей тока в полупроводниках и типы проводимости. Собственная и примесная проводимости. Виды полупроводниковых приборов (диод, транзистор, фото- и терморезисторы, светодиод, лазер) и принципы их использования в электронных устройствах
3.3	Постоянный ток. Закон Ома	Постоянный электрический ток. Сила тока. Плотность тока проводимости. Закон Ома для участка цепи. Электропроводимость, сопротивление. Последовательное и параллельное соединение проводников. Температурная зависимость сопротивлений. Условия существования тока. Источники тока. Электродвижущая сила источника. Закон Ома для неоднородного участка и полной цепи. Правила Кирхгофа. Работа и мощность тока. КПД источников. Закон Джоуля-Ленца. Закон Ома и Джоуля-Ленца в дифференциальной форме
1	Механика	- Mich debending debute
3		THETHOM
3	Электричество и маг	нетизм

Курс лабораторных занятий

No	Наименование раздела /	Содержание
	темы дисциплины	
1.2	Динамика системы	Изучение законов динамики поступательного движения
	материальных точек	тел на машине Атвуда
		Изучение явления удара
		Изучение явления сухого трения

3	Электричество и магнетизм		
1	Механика		
		полупроводникового диода Определение заряда электрона и числа Фарадея	
		Исследование вольт-амперной характеристики	
		Изменение пределов измерения амперметра и вольтметра	
		сопротивлений	
	Ома	законов последовательного и параллельного соединений	
3.3	Постоянный ток. Закон	Измерение электрического сопротивления, проверка	
		Изучение электростатического поля	
		соединений конденсаторов	
3.1	Siekipoetuinku	последовательного, параллельного и смешанного	
3.1	Электростатика	Измерение емкости конденсаторов. Изучение законов	
		Изучение законов кинематики поступательного движения тел	
	материальной точки	объёма твёрдых тел	
1.1	Кинематика	Изучение методов измерений линейных размеров и	
		упругости при деформации изгиба	
		Определение коэффициента упругости и модуля	
		упругости при деформации растяжения	
		Определение коэффициента упругости и модуля	

5. Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине (модулю)

Темы для самостоятельного изучения

№ п/п	Наименование раздела /темы дисциплины	Общая трудоёмкость всего (в часах)
1	Кинематика материальной точки	3
2	Динамика системы материальных точек	3
3	Импульс тела. Работа и энергия	3
4	Динамика вращательного движения твёрдого тела	3
5	Механика жидкостей и газов	3
6	Механические колебания и волны	3
7	Основы молекулярно- кинетической теории	3
8	Основы термодинамики	4
9	Реальные газы, жидкости и твёрдые тела	3
10	Электростатика	16
11	Электрическое поле в проводниках и в диэлектриках	16
12	Постоянный ток. Закон Ома	18
13	Магнитное поле	20
14	Электромагнитная индукция. Переменный ток	20
15	Геометрическая оптика	24

16	Волновая оптика	24	
17	Квантовые свойства света	24	
18	Физика атома. Физика атомного	25	
10	ядра и элементарных частиц	23	
	Bcero	215	

Качество и глубина освоения материала по изучаемой дисциплине неразрывно связаны с чёткой организацией и эффективностью самостоятельной работы студентов (СРС). Цель самостоятельной работы студента — осмысленно и самостоятельно работать сначала с учебным материалом, затем с научной информацией, заложить основы самоорганизации и самовоспитания с тем, чтобы привить умение в дальнейшем непрерывно повышать свою профессиональную квалификацию. Самостоятельная работа студентов при изучении курса «Физика» включает в себя следующие виды деятельности:

- 1) подготовка к лекциям, лабораторным и практическим занятиям;
- 2) самостоятельное изучение отдельных вопросов курса;
- 3) выполнение домашних контрольных работ;
- 4) подготовка к промежуточному контролю знаний (коллоквиуму, защите лабораторных работ и др.).

Для максимального усвоения дисциплины рекомендуется ведение конспекта и глоссария, чтение и анализ лекционного материала. В период подготовки к лекционным занятиям главное — научиться методам самостоятельного умственного труда, сознательно развивать свои творческие способности и овладевать навыками творческой работы. Для этого необходимо строго соблюдать дисциплину учебы и поведения. Четкое планирование своего рабочего времени и отдыха является необходимым условием для успешной самостоятельной работы. В процессе подготовки к практическим занятиям, студентам необходимо обратить особое внимание на самостоятельное изучение рекомендованной учебно-методической (а также научной и популярной) литературы. Самостоятельная работа с учебниками, учебными пособиями, научной, справочной и популярной литературой, материалами периодических изданий и Интернета, статистическими данными является наиболее эффективным методом получения знаний, позволяет значительно активизировать процесс овладения информацией, способствует более глубокому усвоению изучаемого материала, формирует у студентов свое отношение к конкретной проблеме.

Для реализации данных видов деятельности студенты самостоятельно прорабатывают литературу. В качестве источников для самостоятельного изучения материала рекомендуется использовать учебники, указанные в перечне основной и дополнительной учебной литературы.

6. Учебно-методическое и информационное обеспечение дисциплины (модуля)

6.1. Перечень учебной литературы, необходимой для освоения дисциплины (модуля) Основная учебная литература:

- 1. Савельев, И. В. Курс общей физики. В 3 т. Том 2. Электричество и магнетизм. Волны. Оптика: учебное пособие для вузов / И. В. Савельев. 16-е изд., стер. Санкт-Петербург: Лань, 2022. 500 с. ISBN 978-5-8114-8926-8. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/185339 (дата обращения: 19.05.2022). Режим доступа: для авториз. пользователей.
- 2. Савельев, И. В. Курс общей физики: учебное пособие: в 3 томах / И. В. Савельев. 16-е изд., стер. Санкт-Петербург: Лань, 2020 Том 1: Механика. Молекулярная

- физика 2020. 436 с. ISBN 978-5-8114-5539-3. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/142380 (дата обращения: 19.05.2022). Режим доступа: для авториз. пользователей.
- 3. Савельев, И. В. Курс физики: учебное пособие: в 3 томах / И. В. Савельев. 7-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Том 3: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц 2019. 308 с. ISBN 978-5-8114-4254-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/117716 (дата обращения: 19.05.2022). Режим доступа: для авториз. пользователей.

Дополнительная учебная литература:

- 1. Фриш, С. Э. Курс общей физики: учебник: в 3 томах / С. Э. Фриш, А. В. Тиморева. 13-е изд. Санкт-Петербург: Лань, 2021 Том 1: Физические основы механики. Молекулярная физика. Колебания и волны 2021. 480 с. ISBN 978-5-8114-0663-0. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/167787 (дата обращения: 19.05.2022). Режим доступа: для авториз. пользователей.
- 2. Фриш, С. Э. Курс общей физики: учебник: в 3 томах / С. Э. Фриш, А. В. Тиморева. 10-е изд. Санкт-Петербург: Лань, 2021 Том 3: Оптика. Атомная физика 2021. 656 с. ISBN 978-5-8114-0665-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/167704 (дата обращения: 19.05.2022). Режим доступа: для авториз. пользователей.
- 3. Фриш, С. Э. Курс общей физики: учебник: в 3 томах / С. Э. Фриш, А. В. Тиморева. 12-е изд. Санкт-Петербург: Лань, 2021 Том 2: Электрические и электромагнетические явления 2021. 528 с. ISBN 978-5-8114-0664-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/167788 (дата обращения: 19.05.2022). Режим доступа: для авториз. пользователей.

6.2. Перечень электронных библиотечных систем, современных профессиональных баз данных и информационных справочных систем

№ п/п Наименование документа с указанием реквизитов