СТЕРЛИТАМАКСКИЙ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет	Естественнонаучный
Кафедра	Общей и теоретической физики
	Рабочая программа дисциплины (модуля)
дисциплина	Рентгеноструктурный анализ
тика ан	Блок Б1, вариативная часть, Б1.В.01.04 сциплины и его часть (базовая, вариативная, дисциплина по выбору)
цикл ди	липпины и его часть (оазовая, вариативная, дисциппина по выоору)
	Направление
03.03.02	Физика
код	наименование направления
	Программа
	программа
	Медицинская физика
	Форма обучения
	Форма обутения
	Очная
	Для поступивших на обучение в
	2019 Γ.
Разработчик (состав	
старший преподав	
Курбангулов А.	<i>Р</i> .

ученая степень, должность, ФИО

1. П	Геречень планируемых результатов обучения по дисциплине (модулю) 3
	1.1. Перечень планируемых результатов освоения образовательной программы3
	1.2. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы .3
2. N	Лесто дисциплины (модуля) в структуре образовательной программы4
ака обу	Объем дисциплины (модуля) в зачетных единицах с указанием количества демических или астрономических часов, выделенных на контактную работу чающихся с преподавателем (по видам учебных занятий) и на самостоятельную оту обучающихся
ука	Содержание дисциплины (модуля), структурированное по темам (разделам) с занием отведенного на них количества академических часов и видов учебных ятий
	4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)
	4.2. Содержание дисциплины, структурированное по разделам (темам)6
	учебно-методическое обеспечение для самостоятельной работы обучающихся по циплине (модулю)
6. Y	$^{\prime}$ чебно-методическое и информационное обеспечение дисциплины (модуля) 10
	6.1. Перечень учебной литературы, необходимой для освоения дисциплины10
	6.2. Перечень электронных библиотечных систем, современных профессиональных баз данных и информационных справочных систем

1. Перечень планируемых результатов обучения по дисциплине (модулю)

1.1. Перечень планируемых результатов освоения образовательной программы

Выпускник, освоивший программу высшего образования, в рамках изучаемой дисциплины, должен обладать компетенциями, соответствующими видам профессиональной деятельности, на которые ориентирована программа:

Способностью использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей (ОПК-2)

Способностью пользоваться современными методами обработки, анализа и синтеза физической информации в избранной области физических исследований (ПК-5)

1.2. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Формируемая компетенция (с указанием кода)	Этапы формирования компетенции	Планируемые результаты обучения по дисциплине (модулю)
Способностью пользоваться	1 этап: Знания	Обучающийся должен знать:
современными методами		систему понятий и представлений о
обработки, анализа и синтеза		структуре, используемых для
физической информации в		характеристики свойств вещества;
избранной области физических		методы анализа свойств физических
исследований (ПК-5)		систем
	2 этап: Умения	Обучающийся должен уметь:
		использовать понятия о симметрии
		кристаллов, описываемых
		точечными и пространственными
		группами, применять знания при
		расшифровке дифрактограмм,
		идентификации фазы
	3 этап: Владения	Обучающийся должен владеть:
	(навыки / опыт	основами знаний в области базовых
	деятельности)	понятий и пользоваться
		терминологией изучаемой
		дисциплины; навыками проведения
		экспериментальной оценки
		исследуемого вещества; навыками
		использования методов решения
		задач по рентгеноструктурному
		анализу
Способностью использовать в	1 этап: Знания	Обучающийся должен знать:
профессиональной		основных понятия, определения и
деятельности базовые знания		законы рентгеноструктурного
фундаментальных разделов		анализа и кристаллографии; виды
математики, создавать		кристаллических решеток и их
математические модели		характеристики; основные методы
типовых профессиональных		наблюдения дифракции и
задач и интерпретировать		исследования структуры вещества
полученные результаты с		на основе рентгеновского излучения
учетом границ применимости		
моделей (ОПК-2)	2 этап: Умения	Обучающийся должен уметь:

T.	
	определять межплоскостные
	расстояния в кристаллических
	твердых телах на основе формулы
	Вульфа-Брегга, индексы
	кристаллографических плоскостей;
	рассчитывать параметры решетки
	кристаллического вещества и
	изображать структуру кристалла;
	индицировать рентгенограммы;
	определять тип решетки; находить
	объём элементарной ячейки;
	применять на практике
	профессиональные знания теории и
	методов физических исследований
3 этап: Владения	Обучающийся должен владеть:
(навыки / опыт	методами рентгеноструктурного
деятельности)	исследования твердых
	кристаллических веществ и
	математической обработки
	экспериментальных результатов

2. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина реализуется в рамках вариативной части.

Для освоения дисциплины необходимы компетенции, сформированные в рамках изучения следующих дисциплин: «Физика», «Математика» на уровне школьного образования, а также в ходе изучения таких дисциплин, как общая физика, элементарная физика, прикладная физика, вычислительная физика, обработка результатов физического эксперимента.

Освоение данного модуля является необходимой основой для формирования компетенций при прохождении производственной и преддипломной практики, при оформлении выпускных квалификационных работ.

Дисциплина изучается на 2 курсе в 3 семестре

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 4 зач. ед., 144 акад. ч.

Объем дисциплины	Всего часов	
Ообем дисциплины	Очная форма обучения	
Общая трудоемкость дисциплины	144	
Учебных часов на контактную работу с преподавателем:		
лекций	36	
практических (семинарских)	38	
другие формы контактной работы (ФКР)	0,2	
Учебных часов на контроль (включая часы подготовки):		
дифференцированный зачет		

Учебных часов на самостоятельную работу обучающихся (СР)	69,8
--	------

Формы контроля	Семестры
дифференцированный зачет	3

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№ Наименование раздела / темы п/п дисциплины		Виды учебных занятий, вклю самостоятельную работу обучают трудоемкость (в часах) Контактная работа с			
11/11	дисциплины	преподавателем		СР	
		Лек	Пр/Сем	Лаб	
5.3	Обработка дифрактограммы	2	2	0	3
5.2	Области когерентного рассеяния	2	2	0	3
5.1	Понятие функции профиля	1	1	0	3
5	Метод прецизионного	9	8	0	15,8
	определения параметров решетки				
4.5	Решетки Браве	2	2	0	3
4.4	Простые элементы симметрии	2	2	0	3
4.2	Элементарная ячейка	2	2	0	3
5.4	Экспериментальные ошибки	2	2	0	3,8
	рентгеноструктурного анализа				
5.5	Рентгеновская дифрактометрия	2	1	0	3
1.1	Природа рентгеновского излучения	1	1	0	3
2.3	Атомное рассеяние рентгеновского излучения	2	2	0	4
2.4	Структурная амплитуда и структурный фактор	2	2	0	4
2.5	Дифракция на кристаллической решетке	2	2	0	4
3	Методы наблюдения дифракции	2	4	0	7
	рентгеновских лучей				
3.1	Сфера ограничения	1	2	0	3
3.2	Метод Лауэ и метод порошка	1	2	0	4
4	Кристаллическая структура.	9	10	0	15
	Элементарные ячейки.				
	Симметрия кристаллов				
4.1	Понятие кристаллической решетки	1	2	0	3
2.2	Когерентное и некогерентное	2	2	0	3
	рассеяние				
4.3	Комплекс плоскостей	2	2	0	3
1	Физика рентгеновского излучения	6	6	0	14
2.1	Уравнение Вульфа-Брегга	2	2	0	3
1.2	Непрерывное (тормозное) излучение	1	1	0	4
1.3	Характеристическое излучение	2	2	0	3

1.4	Поглощение рентгеновского	2	2	0	4
	излучения				
2	Кинематическая теория	10	10	0	18
	рассеяния лучей в кристаллах				
	Итого	36	38	0	69,8

4.2. Содержание дисциплины, структурированное по разделам (темам)

Курс практических/семинарских занятий

№	Наименование раздела /	Содержание
	темы дисциплины	-
5.3	Обработка дифрактограммы	Инструментальная и физическая ширина линии.
		Профиль линии как свертка инструментального и
		физического уширения
5.2	Области когерентного	Области когерентного рассеяния (ОКР). Размытие
	рассеяния	максимумов за счет малости ОКР. Формула
<i>E</i> 1	П	Шерера
5.1	Понятие функции профиля	Понятие функции профиля. Ширина линии,
	Мотол произонального опро	способы определения ширины
5 4.5	Решетки Браве	целения параметров решетки Пространственная решетка. Ячейки Браве. Типы
4.5	гешетки враве	решеток Браве
4.4	Простые элементы	Простые элементы симметрии. Ось симметрии.
	симметрии	Плоскость симметрии. Центр симметрии
4.2	Элементарная ячейка	Элементарная ячейка. Индексы узла. Узловые прямые.
	1	Узловая плоскость. Символ семейства узловых
		плоскостей
5.4	Экспериментальные ошибки	Причины ошибок в определении межплоскостных
	рентгеноструктурного	расстояний. Приемы достижения высокой точности
	анализа	
5.5	Рентгеновская	Рентгеновская дифрактометрия. Устройство и
	дифрактометрия	принцип работы дифрактометров. Режимы съемки и
		методы приготовления образцов
1.1	Природа рентгеновского	Взаимодействие электронного пучка с твердым телом.
	излучения	Генерация рентгеновского излучения. Природа и
2.2	•	свойства излучения
2.3	Атомное рассеяние	Функция атомного рассеяния. Фурье-образ
	рентгеновского излучения	распределения электронной плотности атома. Его
		зависимость от длины волны, угла рассеяния, атомного номера рассеивающего вещества. Понятие
		об атомном рассеянии
		об атомном расселии
2.4	Структурная амплитуда и	Рассеяние ячейкой кристалла. Структурная
	структурный фактор	амплитуда и структурный множитель
2.5	Дифракция на	Интерференционная функция. Уравнения Лауэ.
	кристаллической решетке	Главные и побочные максимумы, нулевые значения.
	1	Дифракционное расширение узлов обратной решетки
3	Методы наблюдения дифра	
3.1	Сфера ограничения	Сфера ограничения. Метод вращения
		монокристалла

•	Метод Лауэ, определение ориентировки
порошка	монокристалла. Метод порошка
Кристаллическая структура	. Элементарные ячейки. Симметрия кристаллов
Понятие кристаллической	Понятие кристаллической решетки. Аналитическое
решетки	описание пространственной решетки. Период
	повторяемости
Когерентное и	Когерентное и некогерентное рассеяние. Рассеяние
некогерентное рассеяние	свободным электроном. Поляризация рассеянного
	излучения
Комплекс плоскостей	Комплекс плоскостей. Четвертый индекс плоскости в
	гексагональной системе
Физика рентгеновского излу	учения
Уравнение Вульфа-Брегга	Уравнение Вульфа-Брегга. Обратное пространство.
	Дифракционные индексы обратной решетки. Сфера
	Эвальда
Непрерывное (тормозное)	Непрерывное (тормозное) излучение: механизм
излучение	взаимодействия, спектральная характеристика,
	влияние параметров электронного пучка и свойств
	материала анода
Характеристическое	Характеристическое излучение: механизм
излучение	возникновения,
	спектр и его особенности, серии линий
Поглощение	Поглощение рентгеновского излучения веществом:
рентгеновского излучения	основной закон ослабления лучей, коэффициента
	ослабления, зависимость от длины волны.
	Практические приложения закона
TO	ссеяния лучей в кристаллах
	Кристаллическая структура Понятие кристаллической решетки Когерентное и некогерентное рассеяние Комплекс плоскостей Физика рентгеновского излу Уравнение Вульфа-Брегга Непрерывное (тормозное) излучение Характеристическое излучение Поглощение рентгеновского излучения

Курс лекционных занятий

№	Наименование раздела /	Содержание
	темы дисциплины	
5.3	Обработка дифрактограммы	Инструментальная и физическая ширина линии.
		Профиль линии как свертка инструментального и
		физического уширения
		• •
5.2	Области когерентного	Области когерентного рассеяния (ОКР). Размытие
	рассеяния	максимумов за счет малости ОКР. Формула
		Шерера
5.1	Понятие функции профиля	Понятие функции профиля. Ширина линии,
		способы определения ширины
5	Метод прецизионного опред	целения параметров решетки
4.5	Решетки Браве	Пространственная решетка. Ячейки Браве. Типы
		решеток Браве
4.4	Простые элементы	Простые элементы симметрии. Ось симметрии.
	симметрии	Плоскость симметрии. Центр симметрии
4.2	Элементарная ячейка	Элементарная ячейка. Индексы узла. Узловые прямые.
		Узловая плоскость. Символ семейства узловых
		плоскостей
5.4	Экспериментальные ошибки	Причины ошибок в определении межплоскостных
	рентгеноструктурного	расстояний. Приемы достижения высокой точности
	анализа	
5.5	Рентгеновская	Рентгеновская дифрактометрия. Устройство и

	дифрактометрия принцип работы дифрактометров. Режимы съемк		
		методы приготовления образцов	
1.1	Природа рентгеновского	Взаимодействие электронного пучка с твердым телом.	
	излучения	Генерация рентгеновского излучения. Природа и	
	_	свойства излучения	
2.3	Атомное рассеяние	Функция атомного рассеяния. Фурье-образ	
	рентгеновского излучения	распределения электронной плотности атома. Его	
	-	зависимость от длины волны, угла рассеяния,	
		атомного номера рассеивающего вещества. Понятие	
		об атомном рассеянии	
2.4	Структурная амплитуда и	Рассеяние ячейкой кристалла. Структурная	
	структурный фактор	амплитуда и структурный множитель	
2.5	Дифракция на	Интерференционная функция. Уравнения Лауэ.	
	кристаллической решетке	Главные и побочные максимумы, нулевые значения.	
		Дифракционное расширение узлов обратной решетки	
3	Методы наблюдения дифракции рентгеновских лучей		
3.1	Сфера ограничения	Сфера ограничения. Метод вращения	
		монокристалла	
3.2	Метод Лауэ и метод	Метод Лауэ, определение ориентировки	
	порошка	монокристалла. Метод порошка	
4			
4.1	Понятие кристаллической	Понятие кристаллической решетки. Аналитическое	
	решетки	описание пространственной решетки. Период	
	T.C.	повторяемости	
2.2	Когерентное и	Когерентное и некогерентное рассеяние. Рассеяние	
	некогерентное рассеяние	свободным электроном. Поляризация рассеянного	
4.2	Tr.	излучения	
4.3	Комплекс плоскостей	Комплекс плоскостей. Четвертый индекс плоскости в	
1	Ф	гексагональной системе	
2.1	Физика рентгеновского излу		
2.1	Уравнение Вульфа-Брегга	Уравнение Вульфа-Брегга. Обратное пространство.	
		Дифракционные индексы обратной решетки. Сфера Эвальда	
1.2	Непрерывное (тормозное)	Непрерывное (тормозное) излучение: механизм	
1.2		взаимодействия, спектральная характеристика,	
	излучение	взаимодеиствия, спектральная характеристика, влияние параметров электронного пучка и свойств	
		1 1 1	
1.3	У апактапнатинаакаа	материала анода	
1.3	Характеристическое	Характеристическое излучение: механизм возникновения,	
	излучение	возникновения, спектр и его особенности, серии линий	
1.4	Поглощение	Поглощение рентгеновского излучения веществом:	
1.7	рентгеновского излучения	основной закон ослабления лучей, коэффициента	
	Permissioners is in its in its	ослабления, зависимость от длины волны.	
		Практические приложения закона	
2	Кинематическая теопия пад	ссеяния лучей в кристаллах	
	Time Techun Teophin pu	vaj vaj zan z nemeravata	

5. Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине (модулю)

№	Тема	Общая трудоёмкость всего (в часах)
1.	Взаимодействие электронного пучка с твердым телом. Генерация рентгеновского излучения. Природа и свойства излучения. Непрерывное (тормозное) излучение: механизм взаимодействия, спектральная характеристика, влияние параметров электронного пучка и свойств материала анода. Характеристическое излучение: механизм возникновения, спектр и его особенности, серии линий. Поглощение рентгеновского излучения веществом: основной закон ослабления лучей, коэффициента ослабления, зависимость от длины волны. Практические	8
2.	приложения закона Уравнение Вульфа-Брегга. Обратное пространство. Дифракционные индексы обратной решетки. Сфера Эвальда. Когерентное и некогерентное рассеяние. Рассеяние свободным электроном. Поляризация рассеянного излучения. Функция атомного рассеяния. Фурье-образ распределения электронной плотности атома. Его зависимость от длины волны, угла рассеяния, атомного номера рассеивающего вещества. Понятие об атомном рассеянии. Рассеяние ячейкой кристалла. Структурная амплитуда и структурный множитель. Дифракция на кристаллической решетке. Интерференционная функция. Уравнения Лауэ. Главные и побочные максимумы, нулевые значения. Дифракционное расширение узлов обратной решетки	9
3.	Сфера ограничения. Метод вращения монокристалла. Метод Лауэ, определение ориентировки монокристалла. Метод порошка	3
4.	Понятие кристаллической решетки. Аналитическое описание пространственной решетки. Период повторяемости. Элементарная ячейка. Индексы узла. Узловые прямые. Узловая плоскость. Символ семейства узловых плоскостей. Комплекс плоскостей. Четвертый индекс плоскости в гексагональной системе. Простые элементы симметрии. Ось симметрии. Плоскость симметрии. Центр симметрии. Пространственная решетка. Ячейки Браве. Типы решеток Браве.	10
5.	Понятие функции профиля. Ширина линии, способы определения ширины. Области когерентного рассеяния (ОКР). Размытие максимумов за счет малости ОКР. Формула Шерера. Инструментальная и физическая ширина линии. Профиль линии как свертка инструментального и физического уширения. Причины ошибок в определении межплоскостных расстояний. Приемы достижения высокой точности. Рентгеновская дифрактометрия	9,8

Качество и глубина освоения материала по изучаемой дисциплине неразрывно связаны с чёткой организацией и эффективностью самостоятельной работы студентов (СРС). Цель самостоятельной работы студента — осмысленно и самостоятельно работать сначала с учебным материалом, затем с научной информацией, заложить основы самоорганизации и самовоспитания с тем, чтобы привить умение в дальнейшем непрерывно повышать свою профессиональную квалификацию.

Самостоятельная работа студентов при изучении курса «Рентгеноструктурный анализ» включает в себя следующие виды деятельности:

- 1) подготовка к лекциям, практическим и лабораторным занятиям
- 2) самостоятельное изучение отдельных вопросов курса;
- 3) подготовка к промежуточному контролю знаний (коллоквиуму и др.).

Для максимального усвоения дисциплины рекомендуется ведение конспекта и глоссария, чтение и анализ лекционного материала. В период подготовки к лекционным занятиям главное — научиться методам самостоятельного умственного труда, сознательно развивать свои творческие способности и овладевать навыками творческой работы. Для этого необходимо строго соблюдать дисциплину учебы и поведения. Четкое планирование своего рабочего времени и отдыха является необходимым условием для успешной самостоятельной работы. В процессе подготовки к практическим занятиям, студентам необходимо обратить особое внимание на самостоятельное изучение рекомендованной учебно-методической (а также научной и популярной) литературы. Самостоятельная работа с учебниками, учебными пособиями, научной, справочной и популярной литературой, материалами периодических изданий и Интернета, статистическими данными является наиболее эффективным методом получения знаний, позволяет значительно активизировать процесс овладения информацией, способствует более глубокому усвоению изучаемого материала, формирует у студентов свое отношение к конкретной проблеме.

Для реализации данных видов деятельности студенты самостоятельно прорабатывают источники, указанные в списке литературы.

6. Учебно-методическое и информационное обеспечение дисциплины (модуля)

6.1. Перечень учебной литературы, необходимой для освоения дисциплины Основная учебная литература:

- 1. Матухин, В. Л. Физика твердого тела: учебное пособие / В.Л. Матухин, В.Л. Ермаков. Санкт-Петербург: Лань, 2010. 224 с. ISBN 978-5-8114-0923-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/262 (дата обращения: 25.06.2021).
- 2. Бокий, Г. Б. Рентгеноструктурный анализ: [16+] / Г. Б. Бокий. Изд. 2-е. Москва: Издательство МГУ, 1964. Том 1. 496 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=475623 (дата обращения: 25.06.2021)

Дополнительная учебная литература:

- 1. Ашкрофт, Н. Физика твердого тела / Н. Ашкрофт, Н. Мермин. Москва: Мир, 1978. Том 1. 391 с.: ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=483337 (дата обращения: 25.06.2021)
- 2. Современные методы структурного анализа веществ: учебник: [16+]/ М. Ф. Куприянов, А. Г. Рудская, Н. Б. Кофанова и др. ; Федеральное агентство по образованию Российской Федерации, Южный федеральный университет. Ростовна-Дону: Южный федеральный университет, 2009. 288 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=241003 (дата обращения: 25.05.2021)
- 3. Епифанов, Г. И. Физика твердого тела: учебное пособие / Г. И. Епифанов. 4-е изд., стер. Санкт-Петербург: Лань, 2011. 288 с. ISBN 978-5-8114-1001-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/2023 (дата обращения: 25.06.2021).

6.2. Перечень электронных библиотечных систем, современных профессиональных баз данных и информационных справочных систем

№ п/п Наименование документа с указанием реквизитов