Документ подписан простой электронной подписью

Информация о владельце: ФИО: Сыров Игорь Анатольевич

СТЕРЛИТАМАКСКИЙ ФИЛИАЛ

Должность: Дирек В ДЕРАЛЬНОГО ГОСУ ДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО Дата подписания: 27.06.2022 15:55:53
УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ
Уникальный программный ключ:

Дата подписания: 27.06.2022 15:55:53
УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ
b683afe664d7e9f64175886cf9626a1% [А] БИТОТО В ПОДЖЕТНОГО ОБРАЗОВАНИЯ

Факультет					
Кафедра	Химии и химической технологии				
	Рабочая программа дисциплины (модуля)				
дисциплина	Б1.В.ДВ.01.01 Моделирование химико-технологических процессов				
	часть, формируемая участниками образовательных отношений				
	Направление				
	Tranpassionne				
18.03.01	Химическая технология				
код	наименование направления				
	Программа				
	Химическая технология синтетических веществ				
	Форма обучения				
	•				
	Заочная				
	Для поступивших на обучение в				
	для поступивших на обучение в 2021 г.				
	2021 1.				
Разработчик (сос					
	ческих наук, доцент				
	лова М. М.				
j ichan chenen	ученая степень, должность, ФИО				

уста	еречень планируемых результатов обучения по дисциплине, соотнесенных с новленными в образовательной программе индикаторами достижения петенций
2. Ц	ели и место дисциплины (модуля) в структуре образовательной программы3
акад обуч	бъем дисциплины (модуля) в зачетных единицах с указанием количества демических или астрономических часов, выделенных на контактную работу гающихся с преподавателем (по видам учебных занятий) и на самостоятельную оту обучающихся
указ	одержание дисциплины (модуля), структурированное по темам (разделам) с занием отведенного на них количества академических часов и видов учебных тий4
	4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)
	4.2. Содержание дисциплины, структурированное по разделам (темам)5
	чебно-методическое обеспечение для самостоятельной работы обучающихся по циплине (модулю)7
6. Y	чебно-методическое и информационное обеспечение дисциплины (модуля)7
	6.1. Перечень учебной литературы, необходимой для освоения дисциплины (модуля)7
	6.2. Перечень электронных библиотечных систем, современных профессиональных баз данных и информационных справочных систем

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций

Формируемая компетенция (с указанием кода)	Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине (модулю)
ПК-2. Выполнение работ по комплексному контролю продукции и технологических процессов производства наноструктурированных композиционных материалов	ПК-2.1. 1 этап: Знания	Обучающийся должен знать методы исследований, испытаний, диагностики и контроля качества наноматериалов, полуфабрикатов, заготовок деталей
	ПК-2.2. 2 этап: Умения	Обучающийся должен уметь проводить патентные исследования с целью обеспечения патентной чистоты и патентоспособности новых проектных решений
	ПК-2.3. 3 этап: Владения (навыки/опыт деятельности)	Обучающийся должен разрабатывать проектную документацию опытного образца (опытной партии) изделий из наноструктурированных материалов

2. Цели и место дисциплины (модуля) в структуре образовательной программы

Цели изучения дисциплины:

- 1. формирование системы знаний, умений и навыков в области разработки и применения математических моделей химико-технологических процессов и аппаратов с целью оптимизации основного технико-экономического показателя
- 2. формирование у будущих бакалавров знаний в сфере компьютерных технологий при проведении научных исследований, использованию вычислительной техники в образовательном процессе;
- 3. формирование понимания основ построения информационных систем с использование компьютерных технологий и вопросы моделирования.

Дисциплина изучается на 4 курсе в 7, 8 семестрах

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 180 акад. ч.

Объем дисциплины	Всего часов Заочная форма обучения
Общая трудоемкость дисциплины	180
Учебных часов на контактную работу с преподавателем:	
лекций	6
практических (семинарских)	8
другие формы контактной работы (ФКР)	1,2
Учебных часов на контроль (включая часы подготовки):	7,8
экзамен	
Учебных часов на самостоятельную работу обучающихся (CP)	157

Формы контроля	Семестры
экзамен	8

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№	Наименование раздела / темы	Виды учебных занятий, включая самостоятельную работу обучающихся и трудоемкость (в часах)			
п/п	дисциплины		нтактная рабо		СР
		Лек	іреподавателе! Пр/Сем	Лаб	CP
1	Области применения ЭВМ в	1	0	0	23
	химической технологии				
4.1	Составление математических моделей	1	3	0	22
1.1	Введение в дисциплину. Области	1	0	0	23
	применения ЭВМ в химической				
	технологии				
2	Моделирование химико-	1	0	0	23
	технологических процессов				
2.1	Виды моделирования. Этапы	1	0	0	23
	составления математического				
	описания химических процессов				
3.1	Методы исследования структуры	1	0	0	22
	ПОТОКОВ				
3.2	Типовые математические модели	1	0	0	22
	структуры потоков				
4	Составление математических	1	3	0	22
	моделей экспериментальным				
	методом				

5	Методы оптимизации химико-	1	5	0	45
	технологических процессов и				
	нахождения экстремума функций				
5.1	Методы оптимизации химико-	0,5	3	0	22
	технологических процессов				
5.2	Обработка результатов активных	0,5	2	0	23
	экспериментов и оптимальное				
	планирование				
3	Математическое описание	2	0	0	44
	структуры потоков в аппарате				
	Итого	6	8	0	157

4.2. Содержание дисциплины, структурированное по разделам (темам)

Курс лекционных занятий

No	Наименование раздела /	Содержание
	темы дисциплины	
1		1 в химической технологии
4.1	Составление	Математические модели, составленные
	математических моделей	экспериментально-статическим методом.
		Параметрическая идентификация моделей методом
		наименьших квадратов. Регрессионный анализ: проверка
		воспроизводимости опытов; оценка значимости
		коэффициентов уравнения регрессии; проверка
		адекватности модели. Корреляционный анализ:
		коэффициент корреляции; частный коэффициент
		корреляции; множественный коэффициент корреляции.
		Определение параметров нелинейных регрессионных
		моделей.
1.1	Введение в дисциплину.	Введение в дисциплину. Области применения ЭВМ в
	Области применения ЭВМ	химической технологии. Переработка больших массивов
	в химической технологии	информации. Обработка экспериментальных данных.
		Математическое моделирование. Оптимальное
		проектирование. Управление.
2	Моделирование химико-то	
2.1	Виды моделирования.	Математическое моделирование химических процессов.
	Этапы составления	Виды моделирования: физическое и математическое.
	математического	Основные виды математических моделей:
	описания химических	статистическая, динамическая и полная математическая
	процессов	модель. Выбор и построение модели процесса. Этапы
		составления математического описания. Состав
		математического описания. Моделирующий алгоритм.
		Установление адекватности математических моделей
		реальным объектам. Способы построения
		математических моделей. Математическое
		моделирование. Виды математических моделей:
		статистическая и динамическая. Выбор и построение
		модели с учетом закономерностей процесса.
		Составление моделирующего алгоритма для решения
		уравнений математического описания. Установление
		адекватности математических моделей реальным
		объектам. Способы построения математических

		моделей: аналитические, экспериментальные,
		экспериментально-аналитические.
3.1	Методы исследования	Импульсный ступенчатый и гармоничный методы
3.1	структуры потоков	исследования структуры потоков. Сущность методов –
	Структуры потоков	измерение концентрации индикатора, который вводят на
		входе в аппарат, на выходе потока как функцию
		времени: C=f(t), Основные характеристики
		распределения элементов потока по времени
		пребывания в аппарате (моменты функции
		распределения.)
3.2	Типовые математические	Математическое описание структуры потоков в
3.2	модели структуры	аппарате. Методы исследования структуры потоков:
	потоков	импульсный метод, метод ступенчатого возмущения.
	HOTOROB	Основные характеристики распределения элементов
		потока по времени пребывания в аппарате. Типовые
		математические модели структуры потоков в аппарате:
		модели идеального вытеснения и идеального смешения,
		диффузионная и ячеечная модели.
4	Состав намие метеметимос	ких моделей экспериментальным методом
5		ико-технологических процессов и нахождения
3	экстремума функций	ико-технологических процессов и нахождения
5.1	Методы оптимизации	Методы оптимизации химико -технологических
3.1	химико-технологических	процессов и нахождения экстремума (минимума или
		максимума) функций. Постановка задачи. Поисковые
	процессов	методы для функции одной переменной: методы
		сканирования, дихотомии (половинного деления),
		золотого сечения. Поисковые методы для функций
		многих переменных: метод Гаусса – Зейделя (метод
		покоординатного поиска). Поиск экстремума методом
		динамического программирования.
5.2	Обработка результатов	Обработка результатов активных экспериментов и
3.2	активных экспериментов	оптимальное планирование экспериментов. Полный
	и оптимальное	факторный эксперимент и обработка его результатов.
	планирование	Матрица полного факторного эксперимента и её
	планирование	свойства. Расчет коэффициентов уравнения регрессии.
		Дробный факторный эксперимент. Матрица дробного
		факторного эксперимента. Планирование со
		смешиванием. Определение совместных оценок
		коэффициентов регрессии. Разрешающая способность
		матрицы планирования. Расчет коэффициентов
		регрессии. Эксперименты на основе планов второго
		порядка. Ортогональное центральное композиционное
		планирование
3	Математическое описания	е структуры потоков в аппарате
J	TATAL CHIAL MACCRUE ULINCAHM	Структуры потоков в аппарате

Курс практических/семинарских занятий

№	Наименование раздела / темы	Содержание
	дисциплины	
4.1	Составление математических	Практическое задание № 1. Обработка
	моделей	экспериментальных данных методом наименьших
		квадратов.
		Цель работы: Освоение обработки

		экспериментальных данных методом наименьших
		квадратов.
		Практическое задание № 2. Регрессионный
		анализ.
		Цель работы: Освоение метода регрессионного
		анализа и составление экспериментально-
		статистической модели процесса пиролиза.
4	Составление математических мо	делей экспериментальным методом
5	Методы оптимизации химико-те	хнологических процессов и нахождения
	экстремума функций	
5.1	Методы оптимизации химико-	Цель работы: Освоение методов сканирования,
	технологических процессов	половинного деления (дихотомии) и золотого
		сечения.
		Практическое задание № 4. Многомерная
		оптимизация. Поиск экстремума методом
		Гаусса-Зейделя.
		Цель работы: Освоение метода многомерной
		оптимизации Гаусса-Зейделя.
		Практическое задание № 5. Многомерная
		оптимизация. Методы стохастической
		оптимизации. Симплексный метод.
		Цель работы: Освоение симплексного метода
		оптимизации.
5.2	Обработка результатов активных	Практическое задание № 6. Обработка
	экспериментов и оптимальное	экспериментальных данных кубическими
	планирование	сплайнами
	1	Цель работы: Освоение метода и алгоритма
		интерполяции экспериментальных данных
		кубическими сплайнами.
		njon reamini eminimi.

5. Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине (модулю)

- 1. Поисковые методы экстремума функции многих переменных.
- 2. Метод Гаусса-Зейделя (метод покоординатного поиска)
- 3. Поиск экстремума методом динамического программирования
- 4. Динамическое программирование для процессов ректификации
- 5. Динамическое программирование для процессов абсорбции
- 6. Динамическое программирование для каскада реактивов
- 7. Динамическое программирование для множественных адиабатических слоев
- 8. Моделирование гетерогенных каталитических процессов
- 9. Разработка математических моделей массообменных процессов
- 10. Разработка математических моделей тепловых процессов

6. Учебно-методическое и информационное обеспечение дисциплины (модуля)

6.1. Перечень учебной литературы, необходимой для освоения дисциплины (модуля) Основная учебная литература:

1. Клинов, А.В. Математическое моделирование химико-технологических процессов: учебное пособие / А.В. Клинов, А.Г. Мухаметзянова; Федеральное агентство по образованию, Государственное образовательное учреждение высшего

- профессионального образования "Казанский государственный технологический университет". Казань: Казанский государственный технологический университет, 2020. 144 с.: ил., табл., схем. Библ. в кн. ISBN 978-5-7882-0774-2; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=270540
- 2. Закгейм, А.Ю. Общая химическая технология: введение в моделирование химикотехнологических процессов: учебное пособие / А.Ю. Закгейм. 3-е изд., перераб. и доп. Москва: Логос, 2020. 304 с. (Новая университетская библиотека). ISBN 978-98704-471-1; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=84988

Дополнительная учебная литература:

1. Клинов, А.В. Лабораторный практикум по математическому моделированию химико-технологических процессов: учебное пособие / А.В. Клинов, А.В. Малыгин; Министерство образования и науки Российской Федерации, Государственное образовательное учреждение высшего профессионального образования «Казанский государственный технологический университет». - Казань: КГТУ, 2020. - 99 с.: ил., табл. - Библиогр.: с. 97.; То же [Электронный ресурс]. - URL: http://biblioclub.ru/index.php?page=book&id=258853

6.2. Перечень электронных библиотечных систем, современных профессиональных баз данных и информационных справочных систем

№ п/п Наименование документа с указанием реквизитов